Stewart Thompson
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stewart Thompson.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Roger E. Davis; Ruth E. Swiderski; Kamal Rahmouni; Darryl Y. Nishimura; Robert F. Mullins; Khristofor Agassandian; Alisdair R. Philp; Charles Searby; Michael P. Andrews; Stewart Thompson; Christopher J. Berry; Daniel R. Thedens; Baoli Yang; Robert M. Weiss; Martin D. Cassell; Edwin M. Stone; Val C. Sheffield
Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that results in retinal degeneration, obesity, cognitive impairment, polydactyly, renal abnormalities, and hypogenitalism. Of the 12 known BBS genes, BBS1 is the most commonly mutated, and a single missense mutation (M390R) accounts for ≈80% of BBS1 cases. To gain insight into the function of BBS1, we generated a Bbs1M390R/M390R knockin mouse model. Mice homozygous for the M390R mutation recapitulated aspects of the human phenotype, including retinal degeneration, male infertility, and obesity. The obese mutant mice were hyperphagic and hyperleptinemic and exhibited reduced locomotor activity but no elevation in mean arterial blood pressure. Morphological evaluation of Bbs1 mutant brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus. Similar abnormalities were also observed in the brains of Bbs2−/−, Bbs4−/−, and Bbs6−/− mice, establishing these neuroanatomical defects as a previously undescribed BBS mouse model phenotype. Ultrastructural examination of the ependymal cell cilia that line the enlarged third ventricle of the Bbs1 mutant brains showed that, whereas the 9 + 2 arrangement of axonemal microtubules was intact, elongated cilia and cilia with abnormally swollen distal ends were present. Together with data from transmission electron microscopy analysis of photoreceptor cell connecting cilia, the Bbs1 M390R mutation does not affect axonemal structure, but it may play a role in the regulation of cilia assembly and/or function.
Current Biology | 2012
Floor van Oosterhout; Simon P. Fisher; Hester C. van Diepen; Thomas S. Watson; Thijs Houben; Henk Tjebbe vanderLeest; Stewart Thompson; Stuart N. Peirson; Russell G. Foster; Johanna H. Meijer
Summary The change in irradiance at dawn and dusk provides the primary cue for the entrainment of the mammalian circadian pacemaker. Irradiance detection has been ascribed largely to melanopsin-based phototransduction [1–5]. Here we examine the role of ultraviolet-sensitive (UVS) cones in the modulation of circadian behavior, sleep, and suprachiasmatic nucleus (SCN) electrical activity. UV light exposure leads to phase-shifting responses comparable to those of white light. Moreover, UV light exposure induces sleep in wild-type and melanopsin-deficient (Opn4−/−) mice with equal efficacy. Electrical recordings from the SCN of wild-type mice show that UV light elicits irradiance-dependent sustained responses that are similar to those induced by white light, with characteristic fast transient components occurring at the light transitions. These responses are retained in Opn4−/− mice and preserved under saturating photopic conditions. The sensitivity of phase-shifting responses to UV light is unaffected by the loss of rods but is severely attenuated by the additional loss of cones. Our data show that UVS cones play an important role in circadian and sleep regulation in mice.
European Journal of Neuroscience | 2008
Stewart Thompson; Russell G. Foster; Edwin M. Stone; Val C. Sheffield; N. Mrosovsky
Studies in mice lacking either classical or melanopsin photoreception have been useful in describing the photoreceptor contribution to irradiance detection in accessory visual responses. However, application of these findings to irradiance detection in intact animals is problematical because retinal degeneration or manipulation can induce secondary changes in the retina. Among responses dependent on irradiance detection, the suppression of activity by light (negative masking) has had limited study. To further understand the function of classical and melanopsin photoreceptors we studied irradiance and spectral sensitivity of masking by light, primarily in mice with intact retinae. The sensitivity of negative masking was equivalent for medium (∼500 nm) and short wavelengths (∼365 nm) in three strains of wild‐type mice, identifying a marked short‐wavelength‐sensitive‐cone input. At medium wavelengths, spectral sensitivity above 500 nm had closest fit to the nomogram for the medium‐wavelength‐sensitive‐cone, but a combined input of cone and melanopsin photoreceptors in wild‐type mice seems likely. Under white light a decompression of the irradiance range of masking in C3H rd/rd cl mice, lacking rods and cones, identified a functional deficiency presumably resulting from the absence of classical photoreceptor input. Together the evidence demonstrates a pronounced and sustained classical photoreceptor input to irradiance detection for negative masking, and suggests one role of classical photoreceptor input is to constrain dynamic range.
Methods in Enzymology | 2005
Stuart N. Peirson; Stewart Thompson; Mark W. Hankins; Russell G. Foster
Research on circadian biology over the past decade has paid increasing attention to the photoreceptor mechanisms that align the molecular clock to the 24-h light/dark cycle, and some of the results to emerge are surprising. For example, the rods and cones within the mammalian eye are not required for entrainment. A population of directly light-sensitive ganglion cells exists within the retina and acts as brightness detectors. This article provides a brief history of the discovery of these novel ocular photoreceptors and then describes the methods that have been used to study the photopigments mediating these responses to light. Photopigment characterization has traditionally been based on a number of complementary approaches, but one of the most useful techniques has been action spectroscopy. A photopigment has a discrete absorbance spectrum, which describes the probability of photons being absorbed as a function of wavelength, and the magnitude of any light-dependent response depends on the number of photons absorbed by the photopigment. Thus, a description of the spectral sensitivity profile (action spectrum) of any light-dependent response must, by necessity, match absorbance spectra of the photopigment mediating the response. We provide a step-by-step approach to conducting action spectra, including the construction of irradiance response curves, the calculation of relative spectral sensitivities, and photopigment template fitting, and discuss the underlying assumptions behind this approach. We then illustrate action spectrum methodologies by an in-depth analysis of action spectra obtained from rodless/coneless (rd/rd cl) mice and discuss, for the first time, the full implications of these findings.
PLOS ONE | 2014
Sajag Bhattarai; Pratibha Singh; Ryan L. Boudreau; Stewart Thompson; Albert R. LaSpada; Arlene V. Drack; Beverly L. Davidson
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disease characterized by loss of motor coordination and retinal degeneration with no current therapies in the clinic. The causative mutation is an expanded CAG repeat in the ataxin-7 gene whose mutant protein product causes cerebellar and brainstem degeneration and retinal cone-rod dystrophy. Here, we reduced the expression of both mutant and wildtype ataxin-7 in the SCA7 mouse retina by RNA interference and evaluated retinal function 23 weeks post injection. We observed a preservation of normal retinal function and no adverse toxicity with ≥50% reduction of mutant and wildtype ataxin-7 alleles. These studies address an important safety concern regarding non-allele specific silencing of ataxin-7 for SCA7 retinal therapy.
Behavioral Neuroscience | 2010
Stewart Thompson; Ana Recober; Timothy W. Vogel; Adisa Kuburas; Jessica A. Owens; Val C. Sheffield; Andrew F. Russo; Edwin M. Stone
Detection of light in the eye underlies image-forming vision, but also regulates adaptive responses in physiology and behavior. Typically these adaptive responses do not involve image-forming vision, but depend on a relatively absolute measure of brightness (nonimage-forming irradiance detection). The goal of this study was to further understand how image-forming vision and nonimage-forming irradiance detection contribute to the effects of light on behavior. Three light dependent behaviors were assessed in wild-type, Rpe65-/- and rd1 mice. In Rpe65-/- mice, nonimage-forming irradiance detection is severely attenuated, but rod based visual acuity is relatively preserved. In rd1 mice visual acuity is nonrecordable, but nonimage-forming responses are less severely attenuated than Rpe65-/-. Positive masking, an image-forming vision dependent increase in wheel running, was absent in rd1 and restricted to higher irradiances in Rpe65-/-. Negative masking, a suppression of wheel running sensitivity with nonimage-forming irradiance detection input, was increased in rd1, but reduced in Rpe65-/- mice. By contrast, light aversion, an avoidance of brightly lit areas, was abolished in both Rpe65-/- and rd1. This shows that image-forming vision is not sufficient for light aversion, suggesting nonimage-forming irradiance detection motivates this behavior. Further, the differing effects of disease suggest that negative masking and light aversion are distinct responses with specialized nonimage-forming irradiance detection pathways.
Vision Research | 2008
N. Mrosovsky; Stewart Thompson
Bright light suppresses locomotor activity in mice (negative masking) but dim light augments activity (positive masking). Retinal degeneration slow mice (rds/rds) were tested for responses to light at 3 months, 1 and 2 years old. The suppressive effect of light increased between 1 and 2 years, but the positive response to dim lights was severely reduced at 1 year. No such effects occurred in aging wildtypes. The results indicate that enhancement of negative masking depends on the degree of degeneration of the classical photoreceptors, and that residual function in photoreceptors lacking outer segments is initially sufficient for positive masking.
Retina-the Journal of Retinal and Vitreous Diseases | 2015
Elliott H. Sohn; Kai Wang; Stewart Thompson; Megan Riker; Jeremy M. Hoffmann; Edwin M. Stone; Robert F. Mullins
Background: Autosomal dominant radial drusen (ADRD), also termed Malattia Leventinese and Doyne honeycomb retinal dystrophy, causes early-onset vision loss because of mutation in EFEMP1. Drusen in an exceedingly rare ADRD human donor eye was compared with eyes affected with age-related macular degeneration (AMD). This study also elucidated whether variations in high-risk AMD genotypes modify phenotypic severity of ADRD. Methods: Morphologic and histochemical analyses of drusen in one ADRD donor and seven AMD donors. Evaluation of complement factor H (CFH) and ARMS2/HTRA1 alleles in a cohort of 25 subjects with ADRD. Results: Autosomal dominant radial drusen had unique onion skin–like lamination but otherwise shared many compositional features with hard, nodular drusen and/or diffuse soft drusen with basal deposits. Autosomal dominant radial drusen also possessed collagen type IV, an extracellular matrix protein that is absent in age-related drusen. Antibodies directed against the membrane attack complex showed robust labeling of ADRD. Vitronectin and amyloid P were present in drusen of both types. High-risk alleles in the CFH and ARMS2/HTRA1 genes were not associated with increasing ADRD severity. Conclusion: Drusen from ADRD and AMD exhibit overlap of some major constituents, but ADRD exhibit distinct alterations in the extracellular matrix that are absent in AMD.
Investigative Ophthalmology & Visual Science | 2011
Stewart Thompson; Steven F. Stasheff; J. Hernandez; E. L. Nylen; Jade S. East; Randy H. Kardon; Lawrence H. Pinto; Robert F. Mullins; Edwin M. Stone
PURPOSE Detection of light in the eye contributes both to spatial awareness (form vision) and to responses that acclimate an animal to gross changes in light (irradiance detection). This dual role means that eye disease that disrupts form vision can also adversely affect physiology and behavioral state. The purpose of this study was to investigate how inner retinal circuitry mediating rod-cone photoreceptor input contributes to functionally distinct irradiance responses and whether that might account for phenotypic diversity in retinal disease. METHODS The sensitivity of the pupillary light reflex and negative masking (activity suppression by light) was measured in wild-type mice with intact inner retinal circuitry, Nob4 mice that lack ON-bipolar cell function, and rd1 mice that lack rods and cones and, therefore, have no input to ON or OFF bipolar cells. RESULTS An expected increase in sensitivity to negative masking with loss of photoreceptor input in rd1 was duplicated in Nob4 mice. In contrast, sensitivity of the pupillary light reflex was more severely reduced in rd1 than in Nob4 mice. CONCLUSIONS Absence of ON-bipolar cell-mediated rod-cone input can fully explain the phenotype of outer retina degeneration for negative masking but not for the pupillary light reflex. Therefore, inner retinal pathways mediating rod-cone input are different for negative masking and the pupillary light reflex.
Investigative Ophthalmology & Visual Science | 2014
Stewart Thompson; Frederick R. Blodi; Swan Lee; Chris R. Welder; Robert F. Mullins; Budd A. Tucker; Steven F. Stasheff; Edwin M. Stone
PURPOSE In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell-derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. METHODS Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (Rds(P90)). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. RESULTS Rds(P90) mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that Rds(P90) mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m(2)). CONCLUSIONS Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision.