Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stig Palm is active.

Publication


Featured researches published by Stig Palm.


The Journal of Nuclear Medicine | 2009

Intraperitoneal α-Particle Radioimmunotherapy of Ovarian Cancer Patients: Pharmacokinetics and Dosimetry of 211At-MX35 F(ab')2—A Phase I Study

Håkan Andersson; Elin Cederkrantz; Tom Bäck; Chaitanya R. Divgi; Jörgen Elgqvist; Jakob Himmelman; György Horvath; Lars Jacobsson; Holger Jensen; Sture Lindegren; Stig Palm; Ragnar Hultborn

The α-emitter 211At labeled to a monoclonal antibody has proven safe and effective in treating microscopic ovarian cancer in the abdominal cavity of mice. Women in complete clinical remission after second-line chemotherapy for recurrent ovarian carcinoma were enrolled in a phase I study. The aim was to determine the pharmacokinetics for assessing absorbed dose to normal tissues and investigating toxicity. Methods: Nine patients underwent laparoscopy 2–5 d before the therapy; a peritoneal catheter was inserted, and the abdominal cavity was inspected to exclude the presence of macroscopic tumor growth or major adhesions. 211At was labeled to MX35 F(ab′)2 using the reagent N-succinimidyl-3-(trimethylstannyl)-benzoate. Patients were infused with 211At-MX35 F(ab′)2 (22.4–101 MBq/L) in dialysis solution via the peritoneal catheter. γ-camera scans were acquired on 3–5 occasions after infusion, and a SPECT scan was acquired at 6 h. Samples of blood, urine, and peritoneal fluid were collected at 1–48 h. Hematology and renal and thyroid function were followed for a median of 23 mo. Results: Pharmacokinetics and dosimetric results were related to the initial activity concentration (IC) of the infused solution. The decay-corrected activity concentration decreased with time in the peritoneal fluid to 50% IC at 24 h, increased in serum to 6% IC at 45 h, and increased in the thyroid to 127% ± 63% IC at 20 h without blocking and less than 20% IC with blocking. No other organ uptakes could be detected. The cumulative urinary excretion was 40 kBq/(MBq/L) at 24 h. The estimated absorbed dose to the peritoneum was 15.6 ± 1.0 mGy/(MBq/L), to red bone marrow it was 0.14 ± 0.04 mGy/(MBq/L), to the urinary bladder wall it was 0.77 ± 0.19 mGy/(MBq/L), to the unblocked thyroid it was 24.7 ± 11.1 mGy/(MBq/L), and to the blocked thyroid it was 1.4 ± 1.6 mGy/(MBq/L) (mean ± SD). No adverse effects were observed either subjectively or in laboratory parameters. Conclusion: This study indicates that by intraperitoneal administration of 211At-MX35 F(ab′)2 it is possible to achieve therapeutic absorbed doses in microscopic tumor clusters without significant toxicity.


The Journal of Nuclear Medicine | 2013

Ex Vivo Activity Quantification in Micrometastases at the Cellular Scale Using the α-Camera Technique

Nicolas Chouin; Sture Lindegren; Sofia Frost; Holger Jensen; Per Albertsson; Ragnar Hultborn; Stig Palm; Lars Jacobsson; Tom Bäck

Targeted α-therapy (TAT) appears to be an ideal therapeutic technique for eliminating malignant circulating, minimal residual, or micrometastatic cells. These types of malignancies are typically infraclinical, complicating the evaluation of potential treatments. This study presents a method of ex vivo activity quantification with an α-camera device, allowing measurement of the activity taken up by tumor cells in biologic structures a few tens of microns. Methods: We examined micrometastases from a murine model of ovarian carcinoma after injection of a radioimmunoconjugate labeled with 211At for TAT. At different time points, biologic samples were excised and cryosectioned. The activity level and the number of tumor cells were determined by combined information from 2 adjacent sections: one exposed to the α-camera and the other stained with hematoxylin and eosin. The time–activity curves for tumor cell clusters, comprising fewer than 10 cells, were derived for 2 different injected activities (6 and 1 MBq). Results: High uptake and good retention of the radioimmunoconjugate were observed at the surface of tumor cells. Dosimetric calculations based on the measured time-integrated activity indicated that for an injected activity of 1 MBq, isolated tumor cells received at least 12 Gy. In larger micrometastases (≤100 μm in diameter), the activity uptake per cell was lower, possibly because of hindered penetration of radiolabeled antibodies; however, the mean absorbed dose delivered to tumor cells was above 30 Gy, due to cross-fire irradiation. Conclusion: Using the α-camera, we developed a method of ex vivo activity quantification at the cellular scale, which was further applied to characterize the behavior of a radiolabeled antibody administered in vivo against ovarian carcinoma. This study demonstrated a reliable measurement of activity. This method of activity quantification, based on experimentally measured data, is expected to improve the relevance of small-scale dosimetry studies and thus to accelerate the optimization of TAT.


European Journal of Nuclear Medicine and Molecular Imaging | 2008

Differences in radiosensitivity between three HER2 overexpressing cell lines

Ann-Charlott Steffen; Lovisa Göstring; Vladimir Tolmachev; Stig Palm; Bo Stenerlöw

PurposeHER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin® treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity.MethodsThe radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211At decays using the HER2-binding affibody molecule 211At-(ZHER2:4)2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied.ResultsSKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus.ConclusionThere can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy.


PLOS ONE | 2015

Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200.

Sture Lindegren; Luciana Nogueira de Sousa Andrade; Tom Bäck; Camila Maria Longo Machado; Bruno Brasil Horta; Carlos Alberto Buchpiguel; Ana Maria Moro; Oswaldo Keith Okamoto; Lars Jacobsson; Elin Cederkrantz; Kohshin Washiyama; Emma Aneheim; Stig Palm; Holger Jensen; Maria Carolina Tuma; Roger Chammas; Ragnar Hultborn; Per Albertsson

The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics.


Current Radiopharmaceuticals | 2011

Patient-specific alpha-particle dosimetry.

Stig Palm; Jörgen Elgqvist; Lars Jacobsson

Alpha-particle therapy has received increased attention during the last few years because of the development of new targeting constructs and new labeling techniques and the availability of suitable α-particle - emitting radionuclides. This work provides an overview of methods that have been used in clinical trials in estimating the absorbed dose to tumors and healthy tissue in patients following such α-particle therapy. Similarities and differences compared to conventional therapies using β¯-particle emitters are presented. The specific challenges of establishing accurate dosimetry for α- particles in the individual patient are also discussed, as is the effect that improved patient-specific dosimetry might have on the overall efficacy of this type of therapy.


Scientific Reports | 2015

Automated astatination of biomolecules--a stepping stone towards multicenter clinical trials.

Emma Aneheim; Per Albertsson; Tom Bäck; Holger Jensen; Stig Palm; Sture Lindegren

To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical and physical properties for use in targeted therapies for cancer. Due to the very short range of the emitted α-particles, this therapy is particularly suited to treating occult, disseminated cancers. Astatine is not intrinsically tumour-specific; therefore, it requires an appropriate tumour-specific targeting vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method that combines dry distillation of astatine-211 and a synthesis module for producing radiopharmaceuticals into a process platform. This platform will standardize production of astatinated radiopharmaceuticals, and hence, it will facilitate large clinical studies focused on this promising, but chemically challenging, alpha-emitting radionuclide. In this work, we describe the process platform, and we demonstrate the production of both astaine-211, for preclinical use, and astatine-211 labelled antibodies.


The Journal of Nuclear Medicine | 2017

Cure of human ovarian carcinoma solid xenografts by fractionated [211At] alpha-radioimmunotherapy: Influence of tumor absorbed dose and effect on long-term survival

Tom Bäck; Nicolas Chouin; Sture Lindegren; Helena Kahu; Holger Jensen; Per Albertsson; Stig Palm

The goal of this study was to investigate whether targeted α-therapy can be used to successfully treat macrotumors, in addition to its established role for treating micrometastatic and minimal disease. We used an intravenous fractionated regimen of α-radioimmunotherapy in a subcutaneous tumor model in mice. We aimed to evaluate the absorbed dose levels required for tumor eradication and growth monitoring, as well as to evaluate long-term survival after treatment. Methods: Mice bearing subcutaneous tumors (50 mm3, NIH:OVCAR-3) were injected repeatedly (1–3 intravenous injections 7–10 d apart, allowing bone marrow recovery) with 211At-MX35-F(ab′)2 at different activities (close to acute myelotoxicity). Mean absorbed doses to tumors and organs were estimated from biodistribution data and summed for the fractions. Tumor growth was monitored for 100 d and survival for 1 y after treatment. Toxicity analysis included body weight, white blood cell count, and hematocrit. Results: Effects on tumor growth after fractionated α-radioimmunotherapy with 211At-MX35-F(ab′)2 was strong and dose-dependent. Complete remission (tumor-free fraction, 100%) was found for tumor doses of 12.4 and 16.4 Gy. The administered activities were high, and long-term toxicity effects (≤60 wk) were clear. Above 1 MBq, the median survival decreased linearly with injected activity, from 44 to 11 wk. Toxicity was also seen by reduced body weight. White blood cell count analysis after α-radioimmunotherapy indicated bone marrow recovery for the low-activity groups, whereas for high-activity groups the reduction was close to acute myelotoxicity. A decrease in hematocrit was seen at a late interval (34–59 wk after therapy). The main external indication of poor health was dehydration. Conclusion: Having observed complete eradication of solid tumor xenografts, we conclude that targeted α-therapy regimens may stretch beyond the realm of micrometastatic disease and be eradicative also for macrotumors. Our observations indicate that at least 10 Gy are required. This agrees well with the calculated tumor control probability. Considering a relative biological effectiveness of 5, this dose level seems reasonable. However, complete remission was achieved first at activity levels close to lethal and was accompanied by biologic effects that reduced long-term survival.


Bioconjugate Chemistry | 2016

Synthesis and Evaluation of Astatinated N-[2-(Maleimido)ethyl]-3-(trimethylstannyl)benzamide Immunoconjugates

Emma Aneheim; Anna M.E. Gustafsson; Per Albertsson; Tom Bäck; Holger Jensen; Stig Palm; Sofia Svedhem; Sture Lindegren

Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 μm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies.


Critical Reviews in Oncology Hematology | 2018

Positron emission tomography and computed tomographic (PET/CT) imaging for radiation therapy planning in anal cancer: A systematic review and meta-analysis

Per Albertsson; Charlotte Alverbratt; Ann Liljegren; Emil Björkander; Annika Strandell; Ola Samuelsson; Stig Palm; Andreas Hallqvist

To improve the accuracy of chemoradiation therapy in anal cancer patients PET/CT is frequently used in the planning of radiation therapy. A systematic review was performed to assess impact on survival, quality of life, symptom score, change in target definition and treatment intention. Systematic literature searches were conducted in Medline, EMBASE, the Cochrane Library, and Centre for Reviews and Dissemination. Ten cross-sectional studies were identified. No data were available on survival or quality of life. The summary estimate of the proportion of patients in which PET/CT had an impact on the target definition, was 23% (95% CI 16;33). The corresponding summary estimate of a change in treatment intent from curative to palliative was 3% (95% CI 2;6). Almost one in four patients had a change in target definition, which supports the use of PET/CT in radiation therapy planning, but the consequence regarding survival and quality of life is still uncertain.


The Journal of Nuclear Medicine | 2017

Model of Intraperitoneal Targeted α-Particle Therapy Shows That Posttherapy Cold-Antibody Boost Enhances Microtumor Radiation Dose and Treatable Tumor Sizes

Stig Palm; Tom Bäck; Sture Lindegren; Ragnar Hultborn; Lars Jacobsson; Per Albertsson

Intraperitoneally administered radiolabeled monoclonal antibodies (mAbs) have been tested in several clinical trials, often with promising results, but have never proven curative. Methods: We have previously presented simulations of clinically relevant amounts of intraperitoneal 90Y-mAbs for treatment of minimal disease and shown that such treatments are unlikely to eradicate microtumors. Our previous model simulated the kinetics of intraperitoneally infused radiolabeled mAbs in humans and showed the benefit of instead using α-emitters such as 211At. In the current work, we introduce penetration of mAbs into microtumors with radii of up to 400 μm. Calculations were performed using dynamic simulation software. To determine the radiation dose distribution in nonvascularized microtumors of various sizes after intraperitoneal 211At-radioimmunotherapy, we used an in-house–developed Monte Carlo program for microdosimetry. Our aim was to find methods that optimize the therapy for as wide a tumor size range as possible. Results: Our results show that high-specific-activity radiolabeled mAbs that are bound to a tumor surface will penetrate slowly compared with the half-lives of 211At and shorter-lived radionuclides. The inner-core cells of tumors with radii exceeding 100 μm may therefore not be sufficiently irradiated. For lower specific activities, the penetration rate and dose distribution will be more favorable for such tumors, but the dose to smaller microtumors and single cells will be low. Conclusion: Our calculations show that the addition of a boost with unlabeled mAb 1–5 h after therapy results in sufficient absorbed doses both to single cells and throughout microtumors up to approximately 300 μm in radius. This finding should also hold for other high-affinity mAbs and short-lived α-emitters.

Collaboration


Dive into the Stig Palm's collaboration.

Top Co-Authors

Avatar

Sture Lindegren

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Lars Jacobsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Tom Bäck

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Jensen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Håkan Andersson

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Per Albertsson

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Aneheim

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge