Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stina Drakare is active.

Publication


Featured researches published by Stina Drakare.


Ecology | 2000

ALLOCHTHONOUS ORGANIC CARBON AND PHYTOPLANKTON/BACTERIOPLANKTON PRODUCTION RELATIONSHIPS IN LAKES

Mats Jansson; Ann-Kristin Bergström; Peter Blomqvist; Stina Drakare

Humic lakes with high inputs of allochthonous dissolved organic carbon have a pelagic food chain that, to a large extent, is based on bacterioplankton energy mobilization from allochthonous organic carbon compounds. This is in contrast to clear lakes in which total pelagic production is based mainly on phytoplankton photosynthesis. The energy economy in humic lakes may be less efficient than in clear lakes, because it is likely that one more link is included in the food chain. Lake data from Scandinavia and North America demonstrate that shifts between food chains based on heterotrophic production and food chains based on primary production can take place at moderate increases or decreases in the concentration of dissolved organic carbon from allochthonous sources. Large variations in the loading of allochthonous organic carbon (e.g., due to climatic variations) may have considerable effects on the biostructure and productivity of lakes.


Ecology Letters | 2010

Regional invariance among microbial communities

Örjan Östman; Stina Drakare; Emma S. Kritzberg; Silke Langenheder; Jürg Brendan Logue; Eva S. Lindström

Microbial ecology has focused much on causes of between-site variation in community composition. By analysing five data-sets each of aquatic bacteria and phytoplankton, we demonstrated that microbial communities show a large degree of similarity in community composition and that abundant taxa were widespread, a typical pattern for many metazoan metacommunities. The regional abundance of taxa explained on average 85 and 41% of variation in detection frequency and 58 and 31% of variation in local abundances for bacteria and phytoplankton, respectively. However, regional abundance explained less variation in local abundances with increasing environmental variation between sites within data-sets. These findings indicate that the studies of microbial assemblages need to consider similarities between communities to better understand the processes underlying the assembly of microbial communities. Finally, we propose that the degree of regional invariance can be linked to the evolution of microbes and the variation in ecosystem functions performed by microbial communities.


Microbial Ecology | 2001

Effects of Additions of DOC on Pelagic Biota in a Clearwater System: Results from a Whole Lake Experiment in Northern Sweden

Peter Blomqvist; Mats Jansson; Stina Drakare; Ann-Kristin Bergström; Lars Brydsten

An oligotrophic clearwater lake, initially characterized by a pronounced dominance of autotrophic phytoplankton and mostly by one species, the green alga Botryococcus, was subject to additions of dissolved organic carbon in the form of white sugar (sucrose) during two consecutive years. The hypothesis tested was that it is organic carbon per se, and not other possible effects of humic substances, that determines the differences in structure of the planktonic ecosystem between humic and clearwater lakes. The additions of DOC resulted in a significant increase in bacterial biomass and a decrease in the biomass of autotrophic phytoplankton. The biomass of mixotrophic and heterotrophic flagellates instead increased significantly, whereas no effects were found to propagate to higher trophic levels. As a result of the changes among biota, total planktonic biomass also decreased to a level typical of nearby humic lakes. We suggest that it is the carbon component of humic material and its utilization by bacterioplankton that determines the structure and function of the pelagic food web in humic lakes.


Hydrobiologia | 2013

Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes

Laurence Carvalho; Sandra Poikane; A. Lyche Solheim; Geoff Phillips; Gábor Borics; Jordi Catalan; C. De Hoyos; Stina Drakare; Bernard Dudley; Marko Järvinen; Christophe Laplace-Treyture; Kairi Maileht; Claire McDonald; Ute Mischke; Jannicke Moe; Giuseppe Morabito; Peeter Nõges; Tiina Nõges; Ingmar Ott; Agnieszka Pasztaleniec; Birger Skjelbred; Stephen J. Thackeray

Phytoplankton constitutes a diverse array of short-lived organisms which derive their nutrients from the water column of lakes. These features make this community the most direct and earliest indicator of the impacts of changing nutrient conditions on lake ecosystems. It also makes them particularly suitable for measuring the success of restoration measures following reductions in nutrient loads. This paper integrates a large volume of work on a number of measures, or metrics, developed for using phytoplankton to assess the ecological status of European lakes, as required for the Water Framework Directive. It assesses the indicator strength of these metrics, specifically in relation to representing the impacts of eutrophication. It also examines how these measures vary naturally at different locations within a lake, as well as between lakes, and how much variability is associated with different replicate samples, different months within a year and between years. On the basis of this analysis, three of the strongest metrics (chlorophyll-a, phytoplankton trophic index (PTI), and cyanobacterial biovolume) are recommended for use as robust measures for assessing the ecological quality of lakes in relation to nutrient-enrichment pressures and a minimum recommended sampling frequency is provided for these three metrics.


PLOS ONE | 2013

Unveiling Distribution Patterns of Freshwater Phytoplankton by a Next Generation Sequencing Based Approach

Alexander Eiler; Stina Drakare; Stefan Bertilsson; Jakob Pernthaler; Sari Peura; Carina Rofner; Karel Šimek; Yang Yang; Petr Znachor; Eva S. Lindström

The recognition and discrimination of phytoplankton species is one of the foundations of freshwater biodiversity research and environmental monitoring. This step is frequently a bottleneck in the analytical chain from sampling to data analysis and subsequent environmental status evaluation. Here we present phytoplankton diversity data from 49 lakes including three seasonal surveys assessed by next generation sequencing (NGS) of 16S ribosomal RNA chloroplast and cyanobacterial gene amplicons and also compare part of these datasets with identification based on morphology. Direct comparison of NGS to microscopic data from three time-series showed that NGS was able to capture the seasonality in phytoplankton succession as observed by microscopy. Still, the PCR-based approach was only semi-quantitative, and detailed NGS and microscopy taxa lists had only low taxonomic correspondence. This is probably due to, both, methodological constraints and current discrepancies in taxonomic frameworks. Discrepancies included Euglenophyta and Heterokonta that were scarce in the NGS but frequently detected by microscopy and Cyanobacteria that were in general more abundant and classified with high resolution by NGS. A deep-branching taxonomically unclassified cluster was frequently detected by NGS but could not be linked to any group identified by microscopy. NGS derived phytoplankton composition differed significantly among lakes with different trophic status, showing that our approach can resolve phytoplankton communities at a level relevant for ecosystem management. The high reproducibility and potential for standardization and parallelization makes our NGS approach an excellent candidate for simultaneous monitoring of prokaryotic and eukaryotic phytoplankton in inland waters.


Hydrobiologia | 2013

A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive

Geoff Phillips; Anne Lyche-Solheim; Birger Skjelbred; Ute Mischke; Stina Drakare; Gary Free; Marko Järvinen; Caridad de Hoyos; Giuseppe Morabito; Sandra Poikane; Laurence Carvalho

Despite improvements in wastewater treatment systems, the impact of anthropogenic nutrient sources remains a key issue for the management of European lakes. The Water Framework Directive (WFD) provides a mechanism through which progress can be made on this issue. The Directive requires a classification of the ecological status of phytoplankton, which includes an assessment of taxonomic composition. In this paper, we present a composition metric, the plankton trophic index, that was developed in the WISER EU FP7 project and demonstrate how it has been used to compare national phytoplankton classification systems in Northern and Central Europe. The metric was derived from summer phytoplankton data summarised by genus from 1,795 lakes, covering 20 European countries. We show that it is significantly related to total phosphorus concentrations, but that it is also sensitive to alkalinity, lake size and climatic variables. Through the use of country-specific reference values for the index, we demonstrate that it is significantly related to other national phytoplankton assessment systems and illustrate for a single European (intercalibration) lake type how it was used to intercalibrate WFD boundaries from different countries.


The ISME Journal | 2012

Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species-area relationships

Jürg Brendan Logue; Silke Langenheder; Anders F. Andersson; Stefan Bertilsson; Stina Drakare; Anders Lanzén; Eva S. Lindström

A central goal in ecology is to grasp the mechanisms that underlie and maintain biodiversity and patterns in its spatial distribution can provide clues about those mechanisms. Here, we investigated what might determine the bacterioplankton richness (BR) in lakes by means of 454 pyrosequencing of the 16S rRNA gene. We further provide a BR estimate based upon a sampling depth and accuracy, which, to our knowledge, are unsurpassed for freshwater bacterioplankton communities. Our examination of 22 669 sequences per lake showed that freshwater BR in fourteen nutrient-poor lakes was positively influenced by nutrient availability. Our study is, thus, consistent with the finding that the supply of available nutrients is a major driver of species richness; a pattern that may well be universally valid to the world of both micro- and macro-organisms. We, furthermore, observed that BR increased with elevated landscape position, most likely as a consequence of differences in nutrient availability. Finally, BR decreased with increasing lake and catchment area that is negative species–area relationships (SARs) were recorded; a finding that re-opens the debate about whether positive SARs can indeed be found in the microbial world and whether positive SARs can in fact be pronounced as one of the few ‘laws’ in ecology.


Ecology and Society | 2011

Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling

David G. Angeler; Stina Drakare; Richard K. Johnson

Revealing the adaptive responses of ecological, social, and economic systems to a transforming biosphere is crucial for understanding system resilience and preventing collapse. However, testing the theory that underpins complex adaptive system organization (e.g., panarchy theory) is challenging. We used multivariate time series modeling to identify scale-specific system organization and, by extension, apparent resilience mechanisms. We used a 20-year time series of invertebrates and phytoplankton from 26 Swedish lakes to test the proposition that a few key-structuring environmental variables at specific scales create discontinuities in community dynamics. Cross-scale structure was manifested in two independent species groups within both communities across lakes. The first species group showed patterns of directional temporal change, which was related to environmental variables that acted at broad spatiotemporal scales (reduced sulfate deposition, North Atlantic Oscillation). The second species group showed fluctuation patterns, which often could not be explained by environmental variables. However, when significant relationships were found, species-group trends were predicted by variables (total organic carbon, nutrients) that acted at narrower spatial scales (i.e., catchment and lake). Although the sets of environmental variables that predicted the species groups differed between phytoplankton and invertebrates, the scale-specific imprints of keystone environmental variables for creating cross-scale structure were clear for both communities. Temporal trends of functional groups did not track the observed structural changes, suggesting functional stability despite structural change. Our approach allows for identifying scale-specific patterns and processes, thus providing opportunities for better characterization of complex adaptive systems organization and dynamics. This, in turn, holds potential for more accurate evaluation of resilience in disparate system types (ecological, social, economic).


Microbial Ecology | 2002

Competition between picoplanktonic cyanobacteria and heterotrophic bacteria along crossed gradients of glucose and phosphate

Stina Drakare

A laboratory experiment was performed to test whether differences in nutrient and energy demands between picophytoplankton and heterotrophic bacteria can explain the apparent inverse biomass relationship between these organisms in lakes along gradients of organic carbon and nutrients. Growth rates and final yield of cells were analyzed in crossed gradients of glucose and phosphate. Concentrations of phosphate (10, 25, and 60 mg P L?1) and glucose (0, 0.3, and 3 mg C L?1) were used in all possible combinations giving 9 different treatments. Heterotrophic bacteria had higher maximum growth rates in all treatments and became larger than picophytoplankton in many treatments. The variance in abundance of heterotrophic bacteria between treatments could almost completely be explained by the combined effects of glucose and P. In treatments where carbon limitation slowed down the growth of heterotrophic bacteria, picophytoplankton became abundant and these organisms showed a positive response to P in combination with a negative response to glucose. The negative effect of glucose on picophytoplankton is suggested to be indirect and caused by competition with bacteria that are favored by organic C. The results suggest that competition for phosphate between phytoplankton and bacteria is not size-dependent, that heterotrophic bacteria are superior competitors for P, and that organic C produced by picophytoplankton was of minor importance for heterotrophic bacteria.


AMBIO: A Journal of the Human Environment | 2014

Assessing and managing freshwater ecosystems vulnerable to environmental change

David G. Angeler; Craig R. Allen; Hannah E. Birgé; Stina Drakare; Brendan G. McKie; Richard K. Johnson

Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

Collaboration


Dive into the Stina Drakare's collaboration.

Top Co-Authors

Avatar

David G. Angeler

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard K. Johnson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meryem Beklioglu

Middle East Technical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge