Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stine H. Kresse is active.

Publication


Featured researches published by Stine H. Kresse.


PLOS ONE | 2012

Modulation of the Osteosarcoma Expression Phenotype by MicroRNAs

Heidi M. Namløs; Leonardo A. Meza-Zepeda; Tale Barøy; Ingrid Ostensen; Stine H. Kresse; Marieke L. Kuijjer; Massimo Serra; Horst Bürger; Anne-Marie Cleton-Jansen; Ola Myklebost

Background Osteosarcomas are the most common primary malignant tumors of bone and show multiple and complex genomic aberrations. miRNAs are non-coding RNAs capable of regulating gene expression at the post transcriptional level, and miRNAs and their target genes may represent novel therapeutic targets or biomarkers for osteosarcoma. In order to investigate the involvement of miRNAs in osteosarcoma development, global microarray analyses of a panel of 19 human osteosarcoma cell lines was performed. Principal findings We identified 177 miRNAs that were differentially expressed in osteosarcoma cell lines relative to normal bone. Among these, miR-126/miR-126*, miR-142-3p, miR-150, miR-223, miR-486-5p and members of the miR-1/miR-133a, miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b clusters were found to be downregulated in osteosarcoma cell lines. All miRNAs in the paralogous clusters miR-17-92, miR-106b-25 and miR-106a-92 were overexpressed. Furthermore, the upregulated miRNAs included miR-9/miR-9*, miR-21*, miR-31/miR-31*, miR-196a/miR-196b, miR-374a and members of the miR-29 and miR-130/301 families. The most interesting inversely correlated miRNA/mRNA pairs in osteosarcoma cell lines included miR-9/TGFBR2 and miR-29/p85α regulatory subunit of PI3K. PTEN mRNA correlated inversely with miR-92a and members of the miR-17 and miR-130/301 families. Expression profiles of selected miRNAs were confirmed in clinical samples. A set of miRNAs, miR-1, miR-18a, miR-18b, miR-19b, miR-31, miR-126, miR-142-3p, miR-133b, miR-144, miR-195, miR-223, miR-451 and miR-497 was identified with an intermediate expression level in osteosarcoma clinical samples compared to osteoblasts and bone, which may reflect the differentiation level of osteosarcoma relative to the undifferentiated osteoblast and fully differentiated normal bone. Significance: This study provides an integrated analysis of miRNA and mRNA in osteosarcoma, and gives new insight into the complex genetic mechanisms of osteosarcoma development and progression.


Genes, Chromosomes and Cancer | 2010

Molecular characterization of commonly used cell lines for bone tumor research: A trans-European EuroBoNet effort

Laura Ottaviano; Karl Ludwig Schaefer; Melanie Gajewski; Wolfgang Huckenbeck; Stefan Baldus; Uwe Rogel; Carlos Mackintosh; Enrique de Alava; Ola Myklebost; Stine H. Kresse; Leonardo A. Meza-Zepeda; Massimo Serra; Anne-Marie Cleton-Jansen; Pancras C.W. Hogendoorn; Horst Buerger; Thomas Aigner; Helmut E. Gabbert; Christopher Poremba

Usage of cancer cell lines has repeatedly generated conflicting results provoked by differences among subclones or contamination with mycoplasm or other immortal mammalian cells. To overcome these limitations, we decided within the EuroBoNeT consortium to characterize a common set of cell lines including osteosarcomas (OS), Ewing sarcomas (ES), and chondrosarcomas (CS). DNA fingerprinting was used to guarantee the identity of all of the cell lines and to distinguish subclones of osteosarcoma cell line HOS. Screening for homozygous loss of 38 tumor suppressor genes by MLPA revealed deletion of CDKN2A as the most common event (15/36), strictly associated with absence of the CDKN2A (p16) protein. Ten cell lines showed missense mutations of the TP53 gene while another set of nine cell lines showed mutations resulting in truncation of the TP53 protein. Cells harboring missense mutations expressed high levels of nuclear TP53, while cell lines with nonsense mutations showed weak/absent staining for TP53. TP53wt cell lines usually expressed the protein in 2–10% of the cells. However, seven TP53wt osteosarcomas were negative for both mRNA and protein expression. Our analyses shed light on the correlation between immunohistochemical and genetic data for CDKN2A and TP53, and confirm the importance of these signaling pathways. The characterization of a substantial number of cell lines represents an important step to supply research groups with proven models for further advanced studies on tumor biology and may help to make results from different laboratories more comparable.


Cancer Research | 2006

Array Comparative Genomic Hybridization Reveals Distinct DNA Copy Number Differences between Gastrointestinal Stromal Tumors and Leiomyosarcomas

Leonardo A. Meza-Zepeda; Stine H. Kresse; Ana H. Barragan-Polania; Bodil Bjerkehagen; Hege O. Ohnstad; Heidi M. Namløs; Junbai Wang; Bjørn E. Kristiansen; Ola Myklebost

Leiomyosarcomas are spindle cell tumors showing smooth muscle differentiation. Until recently, most gastrointestinal stromal tumors (GIST) were also classified as smooth muscle tumors, but now GISTs are recognized as a separate entity, defined as spindle cell and/or epithelioid tumors localized in the gastrointestinal tract. Using microarray-based comparative genomic hybridization (array CGH), we have created a detailed map of DNA copy number changes for 7 GISTs and 12 leiomyosarcomas. Considerable gains and losses of chromosomal segments were observed in both tumor types. The most frequent aberration observed in GISTs was loss of chromosomes 14 and 22, with minimal recurrent regions in 14q11.2-q32.33 (71% of the tumors) and 22q12.2-q13.31 (100%). In leiomyosarcomas, frequent loss of chromosome 10 and 13q was observed, with minimal recurrent regions in 10q21.3 (75%) and 13q14.2-q14.3 (75%). Recurrent high-level amplification of 17p13.1-p11.2 was detected in leiomyosarcomas. Expression profiling using cDNA microarrays revealed four candidate genes in this region with high expression (AURKB, SREBF1, MFAP4, and FLJ10847). Altered expression of AURKB and SREBF1 has been observed previously in other malignancies. Hierarchical clustering of all samples separated GISTs and leiomyosarcomas into two distinct clusters. Statistical analysis identified six chromosomal regions, 1p36.11-p13.1, 9q21.11-9q34.3, 14q11.2-q23.2, 14q31.3-q32.33, 15q24.3-q26.3, and 22q11.21-q13.31, which were significantly different in copy number between GISTs and leiomyosarcomas. Our results show the potential of using array comparative genomic hybridization to classify histologically similar tumors such as GISTs and leiomyosarcomas.


Genes, Chromosomes and Cancer | 2012

Identification of Osteosarcoma Driver Genes by Integrative Analysis of Copy Number and Gene Expression Data

Marieke L. Kuijjer; Halfdan Rydbeck; Stine H. Kresse; Emilie P. Buddingh; Ana B. Lid; Helene Roelofs; Horst Bürger; Ola Myklebost; Pancras C.W. Hogendoorn; Leonardo A. Meza-Zepeda; Anne-Marie Cleton-Jansen

High‐grade osteosarcoma is a tumor with a complex genomic profile, occurring primarily in adolescents with a second peak at middle age. The extensive genomic alterations obscure the identification of genes driving tumorigenesis during osteosarcoma development. To identify such driver genes, we integrated DNA copy number profiles (Affymetrix SNP 6.0) of 32 diagnostic biopsies with 84 expression profiles (Illumina Human‐6 v2.0) of high‐grade osteosarcoma as compared with its putative progenitor cells, i.e., mesenchymal stem cells (n = 12) or osteoblasts (n = 3). In addition, we performed paired analyses between copy number and expression profiles of a subset of 29 patients for which both DNA and mRNA profiles were available. Integrative analyses were performed in Nexus Copy Number software and statistical language R. Paired analyses were performed on all probes detecting significantly differentially expressed genes in corresponding LIMMA analyses. For both nonpaired and paired analyses, copy number aberration frequency was set to >35%. Nonpaired and paired integrative analyses resulted in 45 and 101 genes, respectively, which were present in both analyses using different control sets. Paired analyses detected >90% of all genes found with the corresponding nonpaired analyses. Remarkably, approximately twice as many genes as found in the corresponding nonpaired analyses were detected. Affected genes were intersected with differentially expressed genes in osteosarcoma cell lines, resulting in 31 new osteosarcoma driver genes. Cell division related genes, such as MCM4 and LATS2, were overrepresented and genomic instability was predictive for metastasis‐free survival, suggesting that deregulation of the cell cycle is a driver of osteosarcomagenesis.


Genes, Chromosomes and Cancer | 2009

LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization

Stine H. Kresse; Hege O. Ohnstad; Erik B. Paulsen; Bodil Bjerkehagen; Karoly Szuhai; Massimo Serra; Karl Ludwig Schaefer; Ola Myklebost; Leonardo A. Meza-Zepeda

Osteosarcomas are the most common primary malignant tumor of bone, and almost all conventional osteosarcomas are high‐grade tumors with complex karyotypes. We have examined DNA copy number changes in 36 osteosarcoma tumors and 20 cell lines using microarray‐based comparative genomic hybridization. The most frequent minimal recurrent regions of gain identified in the tumor samples were in 1q21.2‐q21.3 (78% of the samples), 1q21.3‐q22 (78%), and 8q22.1 (72%). Minimal recurrent regions in 10q22.1‐q22.2 (81%), 6q16.1 (67%), 13q14.2 (67%), and 13q21.1 (67%) were most frequently lost. A small region in 3q13.31 (2.1 Mb) containing the gene limbic system‐associated membrane protein (LSAMP) was frequently deleted (56%). LSAMP has previously been reported to be a candidate tumor suppressor gene in other cancer types. The deletion was validated using fluorescence in situ hybridization, and the expression level and promoter methylation status of LSAMP were investigated using quantitative real‐time reverse transcription PCR and methylation‐specific PCR, respectively. LSAMP showed low expression compared to two normal bone samples in 6/15 tumors and 5/9 cell lines with deletion of 3q13.31, and also in 5/14 tumors and 3/11 cell lines with normal copy number or gain. Partial or full methylation of the investigated CpG island was identified in 3/30 tumors and 7/20 cell lines. Statistical analyses revealed that loss of 11p15.4‐p15.3 and low expression of LSAMP (both P = 0.011) were significantly associated with poor survival. Our results show that LSAMP is a novel candidate tumor suppressor gene in osteosarcomas.


PLOS ONE | 2012

Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.

Stine H. Kresse; Halfdan Rydbeck; Magne Skårn; Heidi M. Namløs; Ana H. Barragan-Polania; Anne-Marie Cleton-Jansen; Massimo Serra; Knut Liestøl; Pancras C.W. Hogendoorn; Eivind Hovig; Ola Myklebost; Leonardo A. Meza-Zepeda

Background Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology.


BMC Bioinformatics | 2004

M-CGH: Analysing microarray-based CGH experiments

Junbai Wang; Leonardo A. Meza-Zepeda; Stine H. Kresse; Ola Myklebost

BackgroundMicroarray-based comparative genomic hybridisation (array CGH) is a technique by which variation in relative copy numbers between two genomes can be analysed by competitive hybridisation to DNA microarrays. This technology has most commonly been used to detect chromosomal amplifications and deletions in cancer. Dedicated tools are needed to analyse the results of such experiments, which include appropriate visualisation, and to take into consideration the physical relation in the genome between the probes on the array.ResultsM-CGH is a MATLAB toolbox with a graphical user interface designed specifically for the analysis of array CGH experiments, with multiple approaches to ratio normalization. Specifically, the distributions of three classes of DNA copy numbers (gains, normal and losses) can be estimated using a maximum likelihood method. Amplicon boundaries are computed by either the fuzzy K-nearest neighbour method or a wavelet approach. The program also allows linking each genomic clone with the corresponding genomic information in the Ensembl database http://www.ensembl.org.ConclusionsM-CGH, which encompasses the basic tools needed for analysing array CGH experiments, is freely available for academics http://www.uio.no/~junbaiw/mcgh, and does not require any other MATLAB toolbox.


Blood | 2010

Genomic alterations reveal potential for higher grade transformation in follicular lymphoma and confirm parallel evolution of tumor cell clones

Marianne B. Eide; Knut Liestøl; Ole Christian Lingjærde; Marit E. Hystad; Stine H. Kresse; Leonardo A. Meza-Zepeda; Ola Myklebost; Gunhild Trøen; Hege Vangstein Aamot; Harald Holte; Erlend B. Smeland; Jan Delabie

Our aim was to examine the genetics of clonal evolution in follicular lymphoma (FL) and to identify genetic alterations associated with disease progression. A total of 100 biopsies from 44 patients diagnosed with t(14;18)-positive FL were examined by array comparative genomic hybridization. In 20 patients the patterns of somatic hypermutations (SHMs) in the variable region of heavy chain gene were additionally analyzed. Gain of chromosome X in male samples was a marker for poor outcome (P < .01). Gains involving chromosome 2, 3q, and 5 were exclusively present in FL biopsies from cases with higher grade transformation and were among the copy number alterations (CNAs) associated with inferior survival. Although we noted a trend for increasing genomic complexity in initial versus late FL samples, the overall frequencies of CNAs in initial and late FL biopsies showed a surprisingly stable pattern through the course of the disease. In 27 of cases the initial samples harbored CNAs that were absent in relapse samples, indicating that tumor cell clones at relapse were not direct descendants of initially dominating clones. The pattern of SHMs confirmed parallel development of tumor cell clones in 14 cases. Our findings support the hypothesis of common progenitor cells in FL.


Genes, Chromosomes and Cancer | 2003

11q13 alterations in two cases of hibernoma: Large heterozygous deletions and rearrangement breakpoints near GARP in 11q13.5

Georges Maire; Anne Forus; Cyril Foa; Bodil Bjerkehagen; Claire Mainguené; Stine H. Kresse; Ola Myklebost; Florence Pedeutour

Hibernomas are rare, benign tumors with a histological appearance resembling that of brown adipose tissue. The diagnosis of hibernomas may be difficult because some of them contain only a small number of the characteristic multivacuolated fat cells and can be mistakenly classified as well‐differentiated liposarcomas. Cytogenetic information has been reported for 10 cases, showing that these tumors are characterized by structural rearrangements involving 11q13. Previous fluorescence in situ hybridization (FISH) studies revealed consistent and sometimes cryptic losses of the MEN1 region in 11q13.1. Here, we describe the molecular cytogenetic analysis of two new hibernoma cases. Both tumors showed complex rearrangements, simultaneously including translocations, inversions, and deletions affecting the pair of chromosomes 11. The translocation partners were chromosome 5 in one case and chromosomes 16 and 22 in the other case. The 11q13 region was concomitantly rearranged on both chromosomes 11. FISH studies revealed large heterozygous deletions within the 11q13 band, from 11q13.1 to 11q13.5. Genes such as PYGM, MEN1, CCND1, FGF3, ARIX, and GARP were deleted, showing that the size of the 11q13 altered region was larger than previously reported. Furthermore, both tumors had breakpoints in 11q13.5, one of them in the immediate proximity of the GARP gene. Our results suggest that rearrangements of GARP or a neighboring gene may be important for the pathogenesis of hibernomas.


Molecular Cancer | 2008

DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH

Stine H. Kresse; Magne Skårn; Hege O. Ohnstad; Heidi M. Namløs; Bodil Bjerkehagen; Ola Myklebost; Leonardo A. Meza-Zepeda

BackgroundMalignant peripheral nerve sheath tumors (MPNSTs) are rare and highly aggressive soft tissue tumors showing complex chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, and thereby novel gene targets of potential importance for MPNST development and/or progression, we have analyzed DNA copy number changes in seven high-grade MPNSTs using microarray-based comparative genomic hybridization (array CGH).ResultsConsiderable more gains than losses were observed, and the most frequent minimal recurrent regions of gain included 1q24.1-q24.2, 1q24.3-q25.1, 8p23.1-p12, 9q34.11-q34.13 and 17q23.2-q25.3, all gained in five of seven samples. The 17q23.2-q25.3 region was gained in all five patients with poor outcome and not in the two patients with disease-free survival. cDNA microarray analysis and quantitative real-time reverse transcription PCR were used to investigate expression of genes located within these regions. The gene lysyl oxidase-like 2 (LOXL2) was identified as a candidate target for the 8p23.1-p12 gain. Within 17q, the genes topoisomerase II-α (TOP2A), ets variant gene 4 (E1A enhancer binding protein, E1AF) (ETV4) and baculoviral IAP repeat-containing 5 (survivin) (BIRC5) showed increased expression in all samples compared to two benign tumors. Increased expression of these genes has previously been associated with poor survival in other malignancies, and for TOP2A, in MPNSTs as well. In addition, we have analyzed the expression of five micro RNAs located within the 17q23.2-q25.3 region, but none of them showed high expression levels compared to the benign tumors.ConclusionOur study shows the potential of using DNA copy number changes obtained by array CGH to predict the prognosis of MPNST patients. Although no clear correlations between the expression level and patient outcome were observed, the genes TOP2A, ETV4 and BIRC5 are interesting candidate targets for the 17q gain associated with poor survival.

Collaboration


Dive into the Stine H. Kresse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Marie Cleton-Jansen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pancras C.W. Hogendoorn

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge