Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stine Knudsen is active.

Publication


Featured researches published by Stine Knudsen.


Traffic | 2009

Differential Effects of EGFR Ligands on Endocytic Sorting of the Receptor

Kirstine Roepstorff; Michael V. Grandal; Lasse Henriksen; Stine Knudsen; Mads Lerdrup; Lene Melsæther Grøvdal; Berthe M. Willumsen; Bo van Deurs

Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)‐α causes receptor recycling. TGF‐α therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF‐α, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking.


Nature Genetics | 2010

Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy

Hyun Hor; Zoltán Kutalik; Yves Dauvilliers; Armand Valsesia; Gert Jan Lammers; Claire E. H. M. Donjacour; Alex Iranzo; Joan Santamaria; Rosa Peraita Adrados; José L. Vicario; Sebastiaan Overeem; Isabelle Arnulf; Ioannis Theodorou; Poul Jennum; Stine Knudsen; Claudio L. Bassetti; Johannes Mathis; Michel Lecendreux; Geert Mayer; Peter Geisler; Antonio Benetó; Brice Petit; Corinne Pfister; Julie Vienne Bürki; Gérard Didelot; Michel Billiard; Guadalupe Ercilla; Willem Verduijn; Frans H.J. Claas; Peter Vollenweider

Narcolepsy is a rare sleep disorder with the strongest human leukocyte antigen (HLA) association ever reported. Since the associated HLA-DRB1*1501-DQB1*0602 haplotype is common in the general population (15–25%), it has been suggested that it is almost necessary but not sufficient for developing narcolepsy. To further define the genetic basis of narcolepsy risk, we performed a genome-wide association study (GWAS) in 562 European individuals with narcolepsy (cases) and 702 ethnically matched controls, with independent replication in 370 cases and 495 controls, all heterozygous for DRB1*1501-DQB1*0602. We found association with a protective variant near HLA-DQA2 (rs2858884; P < 3 × 10−8). Further analysis revealed that rs2858884 is strongly linked to DRB1*03-DQB1*02 (P < 4 × 10−43) and DRB1*1301-DQB1*0603 (P < 3 × 10−7). Cases almost never carried a trans DRB1*1301-DQB1*0603 haplotype (odds ratio = 0.02; P < 6 × 10−14). This unexpected protective HLA haplotype suggests a virtually causal involvement of the HLA region in narcolepsy susceptibility.


Sleep | 2012

Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy.

Olivier Andlauer; Hyatt Moore; Seung Chul Hong; Yves Dauvilliers; Takashi Kanbayashi; Seiji Nishino; Fang Han; Michael H. Silber; Tom Rico; Mali Einen; Birgitte Rahbek Kornum; Poul Jennum; Stine Knudsen; Sona Nevsimalova; Francesca Poli; Giuseppe Plazzi; Emmanuel Mignot

STUDY OBJECTIVES To compare clinical, electrophysiologic, and biologic data in narcolepsy without cataplexy with low (≤ 110 pg/ml), intermediate (110-200 pg/ml), and normal (> 200 pg/ml) concentrations of cerebrospinal fluid (CSF) hypocretin-1. SETTING University-based sleep clinics and laboratories. PATIENTS Narcolepsy without cataplexy (n = 171) and control patients (n = 170), all with available CSF hypocretin-1. DESIGN AND INTERVENTIONS Retrospective comparison and receiver operating characteristics curve analysis. Patients were also recontacted to evaluate if they developed cataplexy by survival curve analysis. MEASUREMENTS AND RESULTS The optimal cutoff of CSF hypocretin-1 for narcolepsy without cataplexy diagnosis was 200 pg/ml rather than 110 pg/ml (sensitivity 33%, specificity 99%). Forty-one patients (24%), all HLA DQB1*06:02 positive, had low concentrations (≤ 110 pg/ml) of CSF hypocretin-1. Patients with low concentrations of hypocretin-1 only differed subjectively from other groups by a higher Epworth Sleepiness Scale score and more frequent sleep paralysis. Compared with patients with normal hypocretin-1 concentration (n = 117, 68%), those with low hypocretin-1 concentration had higher HLA DQB1*06:02 frequencies, were more frequently non-Caucasians (notably African Americans), with lower age of onset, and longer duration of illness. They also had more frequently short rapid-eye movement (REM) sleep latency (≤ 15 min) during polysomnography (64% versus 23%), and shorter sleep latencies (2.7 ± 0.3 versus 4.4 ± 0.2 min) and more sleep-onset REM periods (3.6 ± 0.1 versus 2.9 ± 0.1 min) during the Multiple Sleep Latency Test (MSLT). Patients with intermediate concentrations of CSF hypocretin-1 (n = 13, 8%) had intermediate HLA DQB1*06:02 and polysomnography results, suggesting heterogeneity. Of the 127 patients we were able to recontact, survival analysis showed that almost half (48%) with low concentration of CSF hypocretin-1 had developed typical cataplexy at 26 yr after onset, whereas only 2% had done so when CSF hypocretin-1 concentration was normal. Almost all patients (87%) still complained of daytime sleepiness independent of hypocretin status. CONCLUSION Objective (HLA typing, MSLT, and sleep studies) more than subjective (sleepiness and sleep paralysis) features predicted low concentration of CSF hypocretin-1 in patients with narcolepsy without cataplexy.


Journal of Sleep Research | 2013

Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study

Gianina Luca; José Haba-Rubio; Yves Dauvilliers; G. J. Lammers; Sebastiaan Overeem; Claire E. H. M. Donjacour; Geert Mayer; Sirous Javidi; Alex Iranzo; Joan Santamaria; Rosa Peraita-Adrados; Hyun Hor; Zoltán Kutalik; Giuseppe Plazzi; Francesca Poli; Fabio Pizza; Isabelle Arnulf; Michel Lecendreux; Claudio L. Bassetti; Johannes Mathis; Raphael Heinzer; Poul Jennum; Stine Knudsen; Peter Geisler; Aleksandra Wierzbicka; Eva Feketeova; Corinne Pfister; Ramin Khatami; Christian R. Baumann; Mehdi Tafti

The aim of this study was to describe the clinical and PSG characteristics of narcolepsy with cataplexy and their genetic predisposition by using the retrospective patient database of the European Narcolepsy Network (EU‐NN). We have analysed retrospective data of 1099 patients with narcolepsy diagnosed according to International Classification of Sleep Disorders‐2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin‐1 levels, and genome‐wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women: 23.74 ± 12.43 versus 21.49 ± 11.83, P = 0.003) and longer diagnostic delay in women (men versus women: 13.82 ± 13.79 versus 15.62 ± 14.94, P = 0.044). The mean diagnostic delay was 14.63 ± 14.31 years, and longer delay was associated with higher body mass index. The best predictors of short diagnostic delay were young age at diagnosis, cataplexy as the first symptom and higher frequency of cataplexy attacks. The mean multiple sleep latency negatively correlated with Epworth Sleepiness Scale (ESS) and with the number of sleep‐onset rapid eye movement periods (SOREMPs), but none of the polysomnographic variables was associated with subjective or objective measures of sleepiness. Variant rs2859998 in UBXN2B gene showed a strong association (P = 1.28E‐07) with the age at onset of excessive daytime sleepiness, and rs12425451 near the transcription factor TEAD4 (P = 1.97E‐07) with the age at onset of cataplexy. Altogether, our results indicate that the diagnostic delay remains extremely long, age and gender substantially affect symptoms, and that a genetic predisposition affects the age at onset of symptoms.


Brain | 2010

Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency

Stine Knudsen; Steen Gammeltoft; Poul Jennum

Rapid eye movement sleep behaviour disorder is characterized by dream-enacting behaviour and impaired motor inhibition during rapid eye movement sleep. Rapid eye movement sleep behaviour disorder is commonly associated with neurodegenerative disorders, but also reported in narcolepsy with cataplexy. Most narcolepsy with cataplexy patients lack the sleep-wake, and rapid eye movement sleep, motor-regulating hypocretin neurons in the lateral hypothalamus. In contrast, rapid eye movement sleep behaviour disorder and hypocretin deficiency are rare in narcolepsy without cataplexy. We hypothesized that rapid eye movement sleep behaviour disorder coexists with cataplexy in narcolepsy due to hypocretin deficiency. In our study, rapid eye movement sleep behaviour disorder was diagnosed by the International Classification of Sleep Disorders (2nd edition) criteria in 63 narcolepsy patients with or without cataplexy. Main outcome measures were: rapid eye movement sleep behaviour disorder symptoms; short and long muscle activations per hour rapid eye movement and non-rapid eye movement sleep; and periodic and non-periodic limb movements per hour rapid eye movement and non-rapid eye movement sleep. Outcome variables were analysed in relation to cataplexy and hypocretin deficiency with uni- and multivariate logistic/linear regression models, controlling for possible rapid eye movement sleep behaviour disorder biasing factors (age, gender, disease duration, previous anti-cataplexy medication). Only hypocretin deficiency independently predicted rapid eye movement sleep behaviour disorder symptoms (relative risk = 3.69, P = 0.03), long muscle activations per hour rapid eye movement sleep (ln-coefficient = 0.81, P < 0.01), and short muscle activations per hour rapid eye movement sleep (ln-coefficient = 1.01, P < 0.01). Likewise, periodic limb movements per hour rapid eye movement and non-rapid eye movement sleep were only associated with hypocretin deficiency (P < 0.01). A significant association between hypocretin deficiency and cataplexy was confirmed (P < 0.01). In a sub-analysis, hypocretin deficiency suggested the association of periodic limb movements and rapid eye movement sleep behaviour disorder outcomes (symptoms, non-periodic short and long muscle activity) in rapid eye movement sleep. Our results support the hypothesis that hypocretin deficiency is independently associated with rapid eye movement sleep behaviour disorder in narcolepsy. Thus, hypocretin deficiency is linked to the two major disturbances of rapid eye movement sleep motor regulation in narcolepsy: rapid eye movement sleep behaviour disorder and cataplexy. Hypocretin deficiency is also significantly associated with periodic limb movements in rapid eye movement and non-rapid eye movement sleep, and provides a possible pathophysiological link between rapid eye movement sleep behaviour disorder and periodic limb movements in narcolepsy. The study supports the hypothesis that an impaired hypocretin system causes a general instability of motor regulation during wakefulness, rapid eye movement and non-rapid eye movement sleep in human narcolepsy.


PLOS ONE | 2013

Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

Lasse Henriksen; Michael V. Grandal; Stine Knudsen; Bo van Deurs; Lene Melsæther Grøvdal

The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.


Sleep | 2013

Comorbidity and mortality of narcolepsy: a controlled retro- and prospective national study.

Poul Jennum; Rikke Ibsen; Stine Knudsen; Jakob Kjellberg

STUDY OBJECTIVES To identify the factual morbidity and mortality of narcolepsy in a controlled design. SETTING National Patient Registry. PATIENTS All national diagnosed patients (757) with health information at least 3 years prior to and after diagnose of narcolepsy. CONTROLS Randomly selected four citizens (3,013) matched for age, sex, and socioeconomic status from the Danish Civil Registration System Statistics. RESULTS Increased morbidity prior to narcolepsy diagnosis included (odds ratio, 95% confidence interval):- diseases of the endocrine, nutritional, and metabolic systems (2.10, 1.32-3.33); nervous system (5.27, 3.65-7.60); musculoskeletal system (1.59, 1.23-2.05); and other abnormal symptoms and laboratory findings (1.66, 1.25-2.22). After the diagnosis, narcolepsy patients experienced diseases of the endocrine, nutritional, and metabolic (2.31, 1.51-3.54), nervous (9.19, 6.80-12.41), musculoskeletal (1.70, 1.28-2.26), eye (1.67, 1.03-2.71), and respiratory systems (1.84, 1.21-2.81). Specific diagnoses were diabetes (2.4, 1,2-4.7, P < 0.01), obesity (13.4, 3.1-57.6, P < 0.001), sleep apnea (19.2, 7.7-48.3, P < 0.001), other sleep disorders (78.5, 11.8-523.3, P < 0.001), chronic obstructive pulmonary disease (2.8, 1.4-5.8, P < 0.01), lower back pain (2.5, 1.4-4.2, P < 0.001), arthrosis/arthritis (2.5, 1.3-4.8, P < 0.01), observation of neurological diseases (3.5, 1.9-6.5, P < 0.001), observation of other diseases (1.7, 1.2-2.5, P < 0.01), and rehabilitation (5.0, 1.5-16.5, P < 0.005). There was a trend towards greater mortality in narcolepsy (P = 0.07). CONCLUSIONS Patients with narcolepsy present higher morbidity several years prior to diagnose and even higher thereafter. The mortality rate due to narcolepsy was slightly but not significantly higher.


Sleep | 2014

HLA DQB1*06:02 Negative Narcolepsy with Hypocretin/Orexin Deficiency

Fang Han; Ling Lin; Barbara Schormair; Fabio Pizza; Giuseppe Plazzi; Hanna Ollila; Sona Nevsimalova; Poul Jennum; Stine Knudsen; Juliane Winkelmann; Cristin Coquillard; Farbod Babrzadeh; Tim M. Strom; Chunlin Wang; Michael Mindrinos; Marcelo Fernandez Vina; Emmanuel Mignot

STUDY OBJECTIVES To identify rare allelic variants and HLA alleles in narcolepsy patients with hypocretin (orexin, HCRT) deficiency but lacking DQB1*06:02. SETTINGS China (Peking University Peoples Hospital), Czech Republic (Charles University), Denmark (Golstrup Hospital), Italy (University of Bologna), Korea (Catholic University), and USA (Stanford University). DESIGN CSF hypocretin-1, DQB1*06:02, clinical and polysomnographic data were collected in narcolepsy patients (552 with and 144 without cataplexy) from 6 sites. Numbers of cases with and without DQB1*06:02 and low CSF hypocretin-1 were compiled. HLA class I (A, B, C), class II (DRBs, DQA1, DQB1, DPA1, and DPB1), and whole exome sequencing were conducted in 9 DQB1*06:02 negative cases with low CSF hypocretin-1. Sanger sequencing of selected exons in DNMT1, HCRT, and MOG was performed to exclude mutations in known narcolepsy-associated genes. MEASUREMENTS AND RESULTS Classic narcolepsy markers DQB1*06:02 and low CSF hypocretin-1 were found in 87.4% of cases with cataplexy, and in 20.0% without cataplexy. Nine cases (all with cataplexy) were DQB1*06:02 negative with low CSF hypocretin-1, constituting 1.7% [0.8%-3.4%] of all cases with cataplexy and 1.8% [0.8%-3.4%] of cases with low CSF hypocretin independent of cataplexy across sites. Five HLA negative subjects had severe cataplexy, often occurring without clear triggers. Subjects had diverse ethnic backgrounds and HLA alleles at all loci, suggesting no single secondary HLA association. The rare subtype DPB1*0901, and homologous DPB1*10:01 subtype, were present in 5 subjects, suggesting a secondary association with HLA-DP. Preprohypocretin sequencing revealed no mutations beyond one previously reported in a very early onset case. No new MOG or DNMT1 mutations were found, nor were suspicious or private variants in novel genes identified through exome sequencing. CONCLUSIONS Hypocretin, MOG, or DNMT1 mutations are exceptional findings in DQB1*06:02 negative cases with hypocretin deficiency. A secondary HLA-DP association may be present in these cases. These represent particularly difficult diagnostic challenges.


Sleep | 2013

Sleep transitions in hypocretin-deficient narcolepsy.

Gertrud Laura Sørensen; Stine Knudsen; Poul Jennum

STUDY OBJECTIVES Narcolepsy is characterized by instability of sleep-wake, tonus, and rapid eye movement (REM) sleep regulation. It is associated with severe hypothalamic hypocretin deficiency, especially in patients with cataplexy (loss of tonus). As the hypocretin neurons coordinate and stabilize the brains sleep-wake pattern, tonus, and REM flip-flop neuronal centers in animal models, we set out to determine whether hypocretin deficiency and/or cataplexy predicts the unstable sleep-wake and REM sleep pattern of the human phenotype. DESIGN We measured the frequency of transitions in patients with narcolepsy between sleep-wake states and to/from REM and NREM sleep stages. Patients were subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. SETTING Sleep laboratory studies conducted from 2001-2011. PATIENTS In total 63 narcolepsy patients were included in the study. Cataplexy was present in 43 of 63 patients and hypocretin-1 deficiency was present in 37 of 57 patients. MEASUREMENTS AND RESULTS Hypocretin-deficient patients with narcolepsy had a significantly higher frequency of sleep-wake transitions (P = 0.014) and of transitions to/from REM sleep (P = 0.044) than patients with normal levels of hypocretin-1. Patients with cataplexy had a significantly higher frequency of sleep-wake transitions (P = 0.002) than those without cataplexy. A multivariate analysis showed that transitions to/from REM sleep were predicted mainly by hypocretin-1 deficiency (P = 0.011), whereas sleep-wake transitions were predicted mainly by cataplexy (P = 0.001). CONCLUSIONS In human narcolepsy, hypocretin deficiency and cataplexy are both associated with signs of destabilized sleep-wake and REM sleep control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches.


Sleep | 2013

Attenuated Heart Rate Response is Associated with Hypocretin Deficiency in Patients with Narcolepsy

Gertrud Laura Sørensen; Stine Knudsen; Eva Rosa Petersen; Jacob Kempfner; Steen Gammeltoft; Helge Bjarup Dissing Sørensen; Poul Jennum

STUDY OBJECTIVE Several studies have suggested that hypocretin-1 may influence the cerebral control of the cardiovascular system. We analyzed whether hypocretin-1 deficiency in narcolepsy patients may result in a reduced heart rate response. DESIGN We analyzed the heart rate response during various sleep stages from a 1-night polysomnography in patients with narcolepsy and healthy controls. The narcolepsy group was subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. SETTING Sleep laboratory studies conducted from 2001-2011. PARTICIPANTS In total 67 narcolepsy patients and 22 control subjects were included in the study. Cataplexy was present in 46 patients and hypocretin-1 deficiency in 38 patients. INTERVENTIONS None. MEASUREMENTS AND RESULTS All patients with narcolepsy had a significantly reduced heart rate response associated with arousals and leg movements (P < 0.05). Heart rate response associated with arousals was significantly lower in the hypocretin-1 deficiency and cataplexy groups compared with patients with normal hypocretin-1 levels (P < 0.04) and patients without cataplexy (P < 0.04). Only hypocretin-1 deficiency significantly predicted the heart rate response associated with arousals in both REM and non-REM in a multivariate linear regression. CONCLUSIONS Our results show that autonomic dysfunction is part of the narcoleptic phenotype, and that hypocretin-1 deficiency is the primary predictor of this dysfunction. This finding suggests that the hypocretin system participates in the modulation of cardiovascular function at rest.

Collaboration


Dive into the Stine Knudsen's collaboration.

Top Co-Authors

Avatar

Poul Jennum

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo van Deurs

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge