Stjohn Crean
University of Central Lancashire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stjohn Crean.
Journal of Alzheimer's Disease | 2013
Sophie Poole; Simarjit Kaur Singhrao; Lakshmyya Kesavalu; Michael A. Curtis; Stjohn Crean
The aim of this study was to establish a link between periodontal disease and Alzheimers disease (AD) with a view to identifying the major periodontal disease bacteria (Treponema denticola, Tannerella forsythia, and Porphyromonas gingivalis) and/or bacterial components in brain tissue from 12 h postmortem delay. Our request matched 10 AD cases for tissue from Brains for Dementia Research alongside 10 non-AD age-related controls with similar or greater postmortem interval. We exposed SVGp12, an astrocyte cell line, to culture supernatant containing lipopolysaccharide (LPS) from the putative periodontal bacteria P. gingivalis. The challenged SVGp12 cells and cryosections from AD and control brains were immunolabeled and immunoblotted using a battery of antibodies including the anti-P. gingivalis-specific monoclonal antibody. Immunofluorescence labeling demonstrated the SVGp12 cell line was able to adsorb LPS from culture supernatant on its surface membrane; similar labeling was observed in four out of 10 AD cases. Immunoblotting demonstrated bands corresponding to LPS from P. gingivalis in the SVGp12 cell lysate and in the same four AD brain specimens which were positive when screened by immunofluorescence. All controls remained negative throughout while the same four cases were consistently positive for P. gingivalis LPS (p = 0.029). This study confirms that LPS from periodontal bacteria can access the AD brain during life as labeling in the corresponding controls, with equivalent/longer postmortem interval, was absent. Demonstration of a known chronic oral-pathogen-related virulence factor reaching the human brains suggests an inflammatory role in the existing AD pathology.
Journal of Alzheimer's Disease | 2014
Simarjit Kaur Singhrao; Alice Harding; Tal Simmons; Sarita Jane Robinson; Lakshmyya Kesavalu; Stjohn Crean
Periodontitis is a polymicrobial chronic inflammatory disease of tooth-supporting tissues with bacterial etiology affecting all age groups, becoming chronic in a subgroup of older individuals. Periodontal pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola are implicated in the development of a number of inflammatory pathologies at remote organ sites, including Alzheimers disease (AD). The initial inflammatory hypothesis proposed that AD hallmark proteins were the main contributors of central nervous system (CNS) inflammation. This hypothesis is expanding to include the role of infections, lifestyle, and genetic and environmental factors in the pathogenesis of AD. Periodontal disease (PD) typifies a condition that encompasses all of the above factors including pathogenic bacteria. These bacteria not only are the source of low-grade, chronic infection and inflammation that follow daily episodes of bacteremia arising from everyday tasks such as brushing, flossing teeth, chewing food, and during dental procedures, but they also disseminate into the brain from closely related anatomical pathways. The long-term effect of inflammatory mediators, pathogens, and/or their virulence factors, reaching the brain systemically or otherwise would, over time, prime the brains own microglia in individuals who have inherent susceptibility traits. Such susceptibilities contribute to inadequate neutralization of invading agents, upon reaching the brain. This has the capacity to create a vicious cycle of sustained local inflammatory milieu resulting in the loss of cytoarchitectural integrity and vital neurons with subsequent loss of function (deterioration in memory). The possible pathways between PD and AD development are considered here, as well as environmental factors that may modulate/exacerbate AD symptoms.
Journal of Alzheimer's Disease | 2014
Sophie Poole; Simarjit Kaur Singhrao; Sasanka S. Chukkapalli; Mercedes Rivera; Irina M. Velsko; Lakshmyya Kesavalu; Stjohn Crean
Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic inflammation and direct infiltration of bacteria/bacterial components, which may contribute to the development of Alzheimers disease. ApoE-/- mice were orally infected (n = 12) with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum as mono- and polymicrobial infections. ApoE-/- mice were sacrificed following 12 and 24 weeks of chronic infection. Bacterial genomic DNA was isolated from all brain tissues except for the F. nucleatum mono-infected group. Polymerase chain reaction was performed using universal 16 s rDNA primers and species-specific primer sets for each organism to determine whether the infecting pathogens accessed the brain. Sequencing amplification products confirmed the invasion of bacteria into the brain during infection. The innate immune responses were detected using antibodies against complement activation products of C3 convertase stage and the membrane attack complex. Molecular methods demonstrated that 6 out of 12 ApoE-/- mice brains contained P. gingivalis genomic DNA at 12 weeks (p = 0.006), and 9 out of 12 at 24 weeks of infection (p = 0.0001). Microglia in both infected and control groups demonstrated strong intracellular labeling with C3 and C9, due to on-going biosynthesis. The pyramidal neurons of the hippocampus in 4 out of 12 infected mice brains demonstrated characteristic opsonization with C3 activation fragments (p = 0.032). These results show that the oral pathogen P. gingivalis was able to access the ApoE-/- mice brain and thereby contributed to complement activation with bystander neuronal injury.
British Journal of Oral & Maxillofacial Surgery | 2012
Rebecca Merry; Louise Belfield; Paul McArdle; Andrew S. McLennan; Stjohn Crean; Andrew D. Foey
Macrophages are present in healthy oral mucosa and their numbers increase dramatically during disease. They can exhibit a diverse range of phenotypes characterised as a functional spectrum from pro-inflammatory to anti-inflammatory (regulatory) subsets. This review illustrates the role of these subsets in the oral inflammatory disease lichen planus, and the immunosuppressive disease oral squamous cell carcinoma (SCC). We conclude that the role of macrophages in driving progression in oral disease identifies them as potential therapeutic targets for a range of oral pathologies.
Mediators of Inflammation | 2015
Simarjit Kaur Singhrao; Alice Harding; Sophie Poole; Lakshmyya Kesavalu; Stjohn Crean
Periodontal disease (PD) and Alzheimers disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) which have an immune armoury that can circumvent hosts immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition.
PLOS ONE | 2013
Andrew D. Foey; Stjohn Crean
Macrophages (MΦs) determine oral mucosal responses; mediating tolerance to commensal microbes and food whilst maintaining the capacity to activate immune defences to pathogens. MΦ responses are determined by both differentiation and activation stimuli, giving rise to two distinct subsets; pro-inflammatory M1- and anti-inflammatory/regulatory M2- MΦs. M2-like subsets predominate tolerance induction whereas M1 MΦs predominate in inflammatory pathologies, mediating destructive inflammatory mechanisms, such as those in chronic P.gingivalis (PG) periodontal infection. MΦ responses can be suppressed to benefit either the host or the pathogen. Chronic stimulation by bacterial pathogen associated molecular patterns (PAMPs), such as LPS, is well established to induce tolerance. The aim of this study was to investigate the susceptibility of MΦ subsets to suppression by P. gingivalis. CD14hi and CD14lo M1- and M2-like MΦs were generated in vitro from the THP-1 monocyte cell line by differentiation with PMA and vitamin D3, respectively. MΦ subsets were pre-treated with heat-killed PG (HKPG) and PG-LPS prior to stimulation by bacterial PAMPs. Modulation of inflammation was measured by TNFα, IL-1β, IL-6, IL-10 ELISA and NFκB activation by reporter gene assay. HKPG and PG-LPS differentially suppress PAMP-induced TNFα, IL-6 and IL-10 but fail to suppress IL-1β expression in M1 and M2 MΦs. In addition, P.gingivalis suppressed NFκB activation in CD14lo and CD14hi M2 regulatory MΦs and CD14lo M1 MΦs whereas CD14hi M1 pro-inflammatory MΦs were refractory to suppression. In conclusion, P.gingivalis selectively tolerises regulatory M2 MΦs with little effect on pro-inflammatory CD14hi M1 MΦs; differential suppression facilitating immunopathology at the expense of immunity.
Journal of Dentistry | 2012
John Samuel Colombo; Sanda Satoshi; Joji Okazaki; Stjohn Crean; Alastair James Sloan; Rachel J. Waddington
OBJECTIVES Increasing surface roughness and coating with tricalcium phosphate of titanium and titanium alloy implants has been proposed to provide better rates of osseointegration. However, how these changes in surface topography and chemistry influence the osseointegration process of immediate implants placed in fresh extraction sockets is unclear. This study investigated the influence of three clinically employed implant surfaces on the early bone healing events in vivo. METHODS Machined smooth implants were milled from grade 5 Ti6Al4V titanium. Surfaces were moderately roughened by grit blasting, which were then coated with tricalcium phosphate. Implants were placed into freshly extracted incisor sockets of mandibles of normal Wistar rats and left for 1, 3 and 9 weeks. Healing bone tissue around the implants was examined by histochemistry and immunocytochemistry to localise PCNA proliferative cells, and osteoblast differentiation markers osteopontin and osteocalcin. Positive synthesising cells were counted using image analysis. RESULTS Histology indicated no differences in the amount or pattern of bone formation within the healing tissue surrounding the different implant surfaces. Bone healing occurred predominantly on exposed bone surfaces (distance osteogenesis) and not on the implant surface (contact osteogenesis). No differences were observed in the number or timing of PCNA, osteopontin and osteocalcin positive cells within the bone healing tissue around each of the implant analysed. CONCLUSION For immediately placed implants, the surface modifications investigated appeared to have little influence on the activity of bone forming cells surrounding the implant, probably due to the high level of distance osteogenesis seen within this scenario. CLINICAL SIGNIFICANCE For immediate placement of implants into fresh extraction sockets, titanium implants with roughened surfaces and coating with tricalcium phosphate have negligible influence in accelerating the early bone healing events of osseointegration.
Journal of Oral Microbiology | 2017
Simarjit Kaur Singhrao; Sasanka S. Chukkapalli; Sophie Poole; Irina M. Velsko; Stjohn Crean; Lakshmyya Kesavalu
ABSTRACT This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity.
Frontiers in Aging Neuroscience | 2017
Cj Carter; Stjohn Crean; Simarjit Kaur Singhrao
Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the hosts protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimers disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.
Journal of Alzheimer's Disease | 2017
Alice Harding; Sarita Jane Robinson; Stjohn Crean; Simarjit Kaur Singhrao
A risk factor relationship exists between periodontal disease and Alzheimers disease (AD) via tooth loss, and improved memory following dental intervention. This links the microbial contribution from indigenous oral periodontal pathogens to the manifestation of chronic conditions, such as AD. Here, we use Porphyromonas gingivalis infection to illustrate its effect on mental health. P. gingivalis infection, in its primary sub-gingival niche, can cause polymicrobial synergy and dysbiosis. Dysbiosis describes the residency of select commensals from the oral cavity following co-aggregation around the dominant keystone pathogen, such as P. gingivalis, to gain greater virulence. The initial process involves P. gingivalis disturbing neutrophil mediated innate immune responses in the healthy gingivae and then downregulating adaptive immune cell differentiation and development to invade, and subsequently, establish new dysbiotic bacterial communities. Immune responses affect the host in general and functionally via dietary adjustments caused by tooth loss. Studies from animals orally infected with P. gingivalis confirm this bacterium can transmigrate to distant organ sites (the brain) and contribute toward peripheral and intracerebral inflammation, and compromise vascular and microvascular integrity. In another study, P. gingivalis infection caused sleep pattern disturbances by altering glial cell light/dark molecular clock activity, and this, in turn, can affect the clearance of danger associated molecular patterns, such as amyloid-β, via the glymphatic system. Since P. gingivalis can transmigrate to the brain and modulate organ-specific inflammatory innate and adaptive immune responses, this paper explores whether better management of indigenous periodontal bacteria could delay/prevent the onset and/or progression of dementia.