Stone Elworthy
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stone Elworthy.
Development | 2003
Stone Elworthy; James A. Lister; Tom J. Carney; David W. Raible; Robert N. Kelsh
The transcription factor Sox10 is required for the specification, migration and survival of all nonectomesenchymal neural crest derivatives including melanophores. sox10-/- zebrafish lack expression of the transcription factor mitfa, which itself is required for melanophore development. We demonstrate that the zebrafish mitfa promoter has sox10 binding sites necessary for activity in vitro, consistent with studies using mammalian cell cultures that have shown that Sox10 directly regulates Mitf expression. In addition, we demonstrate that these sites are necessary for promoter activity in vivo. We show that reintroduction of mitfa expression in neural crest cells can rescue melanophore development in sox10-/- embryos. This rescue of melanophores in sox10-/- embryos is quantitatively indistinguishable from rescue in mitfa-/- embryos. These findings show that the essential function of sox10 in melanophore development is limited to transcriptional regulation of mitfa. We propose that the dominant melanophore phenotype in Waardenburg syndrome IV individuals with SOX10 mutations is likely to result from failure to activate MITF in the normal number of melanoblasts.
EMBO Reports | 2008
Jonas von Hofsten; Stone Elworthy; Michael J. Gilchrist; James C. Smith; Fiona C. Wardle; Philip W. Ingham
The zebrafish u‐boot (ubo) gene encodes the transcription factor Prdm1, which is essential for the specification of the primary slow‐twitch muscle fibres that derive from adaxial cells. Here, we show that Prdm1 functions by acting as a transcriptional repressor and that slow‐twitch‐specific muscle gene expression is activated by Prdm1‐mediated repression of the transcriptional repressor Sox6. Genes encoding fast‐specific isoforms of sarcomeric proteins are ectopically expressed in the adaxial cells of ubotp39 mutant embryos. By using chromatin immunoprecipitation, we show that these are direct targets of Prdm1. Thus, Prdm1 promotes slow‐twitch fibre differentiation by acting as a global repressor of fast‐fibre‐specific genes, as well as by abrogating the repression of slow‐fibre‐specific genes.
Development | 2008
Stone Elworthy; Murray Hargrave; Rob Knight; Katharina Mebus; Philip W. Ingham
The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.
Development | 2004
Iain T. Shepherd; Jacy Pietsch; Stone Elworthy; Robert N. Kelsh; David W. Raible
Components of the zebrafish GDNF receptor complex are expressed very early in the development of enteric nervous system precursors, and are already present as these cells begin to enter the gut and migrate caudally along its length. Both gfra1a and gfra1b as well as ret are expressed at this time, while gfra2 expression, the receptor component that binds the GDNF-related ligand neurturin, is not detected until the precursors have migrated along the gut. Gfra genes are also expressed in regions of the zebrafish brain and peripheral ganglia, expression domains conserved with other species. Enteric neurons are eliminated after injection with antisense morpholino oligonucleotides against ret or against both Gfra1 orthologs, but are not affected by antisense oligonucleotides against gfra2. Blocking GDNF signaling prevents migration of enteric neuron precursors, which remain positioned at the anterior end of the gut. Phenotypes induced by injection of antisense morpholinos against both Gfra orthologs can be rescued by introduction of mRNA for gfra1a or for gfra2, suggesting that GFRα1 and GFRα2 are functionally equivalent.
Developmental Dynamics | 2011
Claudia Seger; Murray Hargrave; Ruth Jinfen Chai; Stone Elworthy; Philip W. Ingham
The transcription factor Pax7 is a marker and regulator of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. Here, we identify Pax7+ve myogenic cells in the zebrafish and characterize their behavior in postembryonic stages. Mononucleate Pax7+ve cells can first be found associated with myofibers at 72 hours post fertilization (hpf). To follow the behavior of muscle progenitor cells in vivo, we generated transgenic lines expressing fluorescent proteins under the control of the pax7a or pax3a promoters. We established an injury model using cardiotoxin injection and monitored cell proliferation and myogenic regulatory factor expression in myogenic precursors cells and muscle fibers after injury using proliferation markers and the transgenic lines. We also analyzed Pax7+ve cells in animals with dystrophic phenotypes and found an increased number compared with wild‐type. Developmental Dynamics 240:2440–2451, 2011.
Development | 2011
Jin Ben; Stone Elworthy; Ashley Shu Mei Ng; Freek van Eeden; Philip W. Ingham
Using zinc-finger nuclease-mediated mutagenesis, we have generated mutant alleles of the zebrafish orthologue of the chicken talpid3 (ta3) gene, which encodes a centrosomal protein that is essential for ciliogenesis. Animals homozygous for these mutant alleles complete embryogenesis normally, but manifest a cystic kidney phenotype during the early larval stages and die within a month of hatching. Elimination of maternally derived Ta3 activity by germline replacement resulted in embryonic lethality of ta3 homozygotes. The phenotype of such maternal and zygotic (MZta3) mutant zebrafish showed strong similarities to that of chick ta3 mutants: absence of primary and motile cilia as well as aberrant Hedgehog (Hh) signalling, the latter manifest by the expanded domains of engrailed and ptc1 expression in the somites, reduction of nkx2.2 expression in the neural tube, symmetric pectoral fins, cyclopic eyes and an ectopic lens. GFP-tagged Gli2a localised to the basal bodies in the absence of the primary cilia and western blot analysis showed that Gli2a protein is aberrantly processed in MZta3 embryos. Zygotic expression of ta3 largely rescued the effects of maternal depletion, but the motile cilia of Kupffer’s vesicle remained aberrant, resulting in laterality defects. Our findings underline the importance of the primary cilium for Hh signaling in zebrafish and reveal the conservation of Ta3 function during vertebrate evolution.
Cancer Research | 2012
Kirankumar Santhakumar; Emma C. Judson; Philip M. Elks; Sarah McKee; Stone Elworthy; Ellen van Rooijen; Sarah S. Walmsley; Stephen A. Renshaw; Simon S. Cross; Fredericus J. M. van Eeden
Hypoxic signaling is a central modulator of cellular physiology in cancer. Core members of oxygen-sensing pathway including the von Hippel-Lindau tumor suppressor protein (pVHL) and the hypoxia inducible factor (HIF) transcription factors have been intensively studied, but improved organismal models might speed advances for both pathobiologic understanding and therapeutic modulation. To study HIF signaling during tumorigenesis and development in zebrafish, we developed a unique in vivo reporter for hypoxia, expressing EGFP driven by prolyl hydroxylase 3 (phd3) promoter/regulatory elements. Modulation of HIF pathway in Tg(phd3::EGFP) embryos showed a specific role for hypoxic signaling in the transgene activation. Zebrafish vhl mutants display a systemic hypoxia response, reflected by strong and ubiquitous transgene expression. In contrast to human VHL patients, heterozygous Vhl mice and vhl zebrafish are not predisposed to cancer. However, upon exposure to dimethylbenzanthracene (DMBA), the vhl heterozygous fish showed an increase in the occurrence of hepatic and intestinal tumors, a subset of which exhibited strong transgene expression, suggesting loss of Vhl function in these tumor cells. Compared with control fish, DMBA-treated vhl heterozygous fish also showed an increase in proliferating cell nuclear antigen-positive renal tubules. Taken together, our findings establish Vhl as a genuine tumor suppressor in zebrafish and offer this model as a tool to noninvasively study VHL and HIF signaling during tumorigenesis and development.
PLOS Genetics | 2013
Ashish K. Maurya; Jin Ben; Zhonghua Zhao; Raymond Teck Ho Lee; Weixin Niah; Ashley Shu Mei Ng; Audrey Iyu; Weimiao Yu; Stone Elworthy; Fredericus J. M. van Eeden; Philip W. Ingham
Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome patients who are homozygous for loss of function KIF7 alleles.
Experimental Lung Research | 2007
Stephen A. Renshaw; Catherine A. Loynes; Stone Elworthy; Philip W. Ingham; Moira K. B. Whyte
Neutrophilic inflammation is responsible for much of the tissue damage seen in many lung diseases. For resolution of inflammation to occur, neutrophils must die by apoptosis, allowing their recognition and removal by macrophages. The molecular events controlling this important regulatory step are poorly understood, in large part due to the genetic intractability of the human neutrophil granulocyte. The authors have established a model of inflammation in the Zebrafish, which shares many features of the innate immune system with those of humans. Injury to the Zebrafish tailfin induces a reproducible and quantifiable inflammatory response, which resolves with kinetics similar to mammalian models of neutrophilic inflammation, including pulmonary inflammation. Pharmacological modulation of neutrophil apoptosis can modulate the outcome of experimentally induced inflammation. In addition, the authors have generated a construct that expresses green fluorescent protein under the myeloperoxidase promoter, allowing in vivo visualization of neutrophils during experimentally induced inflammation. The authors are also performing an unbiased forward genetic screen for mutants with defective resolution of inflammation, and to date have identified a number of putative mutants. Further study and characterization of these mutants is underway. The authors have thus established an important experimental link between apoptosis and resolution of inflammation in an in vivo system, and defined an important new model for the study of inflammation resolution. The authors hope that these tools will permit detailed study of the genetic controls of the resolution of inflammation, and provide insights with potential clinical utility.
PLOS ONE | 2015
Peter Novodvorsky; Oliver Watson; Caroline Gray; Robert N. Wilkinson; Scott Reeve; Carl Smythe; Richard Beniston; Karen Plant; Richard Maguire; Alexander M.K. Rothman; Stone Elworthy; Fredericus J. M. van Eeden; Timothy J. A. Chico
Introduction and Objectives The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2) transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development. Methods and Results Using Transcription Activator-Like Effector Nucleases (TALEN) we generated a klf2a mutant (klf2a sh317) with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2a sh317 mutants. Homozygous klf2a sh317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC) development or impaired formation of the 5th accessory aortic arch. Homozygous klf2a sh317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl), a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2a sh317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17) in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2a sh317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2a sh317 mutants. Conclusions The klf2a sh317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development.