Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Streamson C. Chua is active.

Publication


Featured researches published by Streamson C. Chua.


Science | 1996

Phenotypes of Mouse diabetes and Rat fatty Due to Mutations in the OB (Leptin) Receptor

Streamson C. Chua; Wendy K. Chung; X. Sharon Wu-Peng; Yiying Zhang; Shun Mei Liu; Louis A. Tartaglia; Rudolph L. Leibel

Mice harboring mutations in the obese (ob) and diabetes (db) genes display similar phenotypes, and it has been proposed that these genes encode the ligand and receptor, respectively, for a physiologic pathway that regulates body weight. The cloning of ob, and the demonstration that it encodes a secreted protein (leptin) that binds specifically to a receptor (OB-R) in the brain, have validated critical aspects of this hypothesis. Here it is shown by genetic mapping and genomic analysis that mouse db, rat fatty (a homolog of db), and the gene encoding the OB-R are the same gene.


Neuron | 2004

Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis

Nina Balthasar; Roberto Coppari; Julie E. McMinn; Shun M. Liu; Charlotte E. Lee; Vinsee Tang; Christopher D. Kenny; Robert A. McGovern; Streamson C. Chua; Joel K. Elmquist; Bradford B. Lowell

Neuroanatomical and electrophysiological studies have shown that hypothalamic POMC neurons are targets of the adipostatic hormone leptin. However, the physiological relevance of leptin signaling in these neurons has not yet been directly tested. Here, using the Cre/loxP system, we critically test the functional importance of leptin action on POMC neurons by deleting leptin receptors specifically from these cells in mice. Mice lacking leptin signaling in POMC neurons are mildly obese, hyperleptinemic, and have altered expression of hypothalamic neuropeptides. In summary, leptin receptors on POMC neurons are required but not solely responsible for leptins regulation of body weight homeostasis.


Molecular and Cellular Biology | 2009

Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI†

Tayeba Khan; Eric S. Muise; Puneeth Iyengar; Zhao V. Wang; Manisha Chandalia; Nicola Abate; Bei B. Zhang; Paolo Bonaldo; Streamson C. Chua; Philipp E. Scherer

ABSTRACT Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating “adipose tissue fibrosis” as a hallmark of metabolically challenged adipocytes. Collagen VI is a highly enriched extracellular matrix component of adipose tissue. The absence of collagen VI results in the uninhibited expansion of individual adipocytes and is paradoxically associated with substantial improvements in whole-body energy homeostasis, both with high-fat diet exposure and in the ob/ob background. Collectively, our data suggest that weakening the extracellular scaffold of adipocytes enables their stress-free expansion during states of positive energy balance, which is consequently associated with an improved inflammatory profile. Therefore, the disproportionate accumulation of extracellular matrix components in adipose tissue may not be merely an epiphenomenon of metabolically challenging conditions but may also directly contribute to a failure to expand adipose tissue mass during states of excess caloric intake.


Neuron | 2011

Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons.

Linh Vong; Chianping Ye; Zongfang Yang; Brian Choi; Streamson C. Chua; Bradford B. Lowell

Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part because of incomplete knowledge regarding first-order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first-order neurons. While functionally relevant neurons have been identified, the observed effects have been small, suggesting that most first-order neurons remain unidentified. Here we take an alternative approach and test whether first-order neurons are inhibitory (GABAergic, VGAT⁺) or excitatory (glutamatergic, VGLUT2⁺). Remarkably, the vast majority of leptins antiobesity effects are mediated by GABAergic neurons; glutamatergic neurons play only a minor role. Leptin, working directly on presynaptic GABAergic neurons, many of which appear not to express AgRP, reduces inhibitory tone to postsynaptic POMC neurons. As POMC neurons prevent obesity, their disinhibition by leptin action on presynaptic GABAergic neurons probably mediates, at least in part, leptins antiobesity effects.


Nature Medicine | 2006

Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake

Tadahiro Kitamura; Yun Feng; Yukari Ido Kitamura; Streamson C. Chua; Allison W. Xu; Gregory S. Barsh; Luciano Rossetti; Domenico Accili

Leptin controls food intake by regulating the transcription of key neuropeptides in the hypothalamus. The mechanism by which leptin regulates gene expression is unclear, however. Here we show that delivery of adenovirus encoding a constitutively nuclear mutant FoxO1, a transcription factor known to control liver metabolism and pancreatic beta-cell function, to the hypothalamic arcuate nucleus of rodents results in a loss of the ability of leptin to curtail food intake and suppress expression of Agrp. Conversely, a transactivation-deficient FoxO1 mutant prevents induction of Agrp by fasting. We also find that FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of Agrp and Pomc through transcriptional squelching. FoxO1 promotes opposite patterns of coactivator-corepressor exchange at the Pomc and Agrp promoters, resulting in activation of Agrp and inhibition of Pomc. Thus, FoxO1 represents a shared component of pathways integrating food intake and peripheral metabolism.


Journal of Clinical Investigation | 2005

Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes

Carl de Luca; Timothy J. Kowalski; Yiying Zhang; Joel K. Elmquist; Charlotte E. Lee; Manfred W. Kilimann; Thomas Ludwig; Shun Mei Liu; Streamson C. Chua

We have generated mice that carry a neuron-specific leptin receptor (LEPR) transgene whose expression is driven by the rat synapsin I promoter synapsin-LEPR B (SYN-LEPR-B). We have also generated mice that are compound hemizygotes for the transgenes SYN-LEPR-B and neuron-specific enolase-LEPR B (NSE-LEPR-B). We observed a degree of correction in db/db mice that are hemizygous (Syn db/db) and homozygous (Syn/Syn db/db) for the SYN-LEPR-B transgene similar to that previously reported for the NSE-LEPR-B transgene. We also show complete correction of the obesity and related phenotypes of db/db mice that are hemizygous for both NSE-LEPR-B and SYN-LEPR-B transgenes (Nse+Syn db/db). Body composition, insulin sensitivity, and cold tolerance were completely normalized in Nse+Syn db/db mice at 12 weeks of age compared with lean controls. In situ hybridization for LEPR B isoform expression in Nse+Syn db/db mice showed robust expression in the energy homeostasis-relevant regions of the hypothalamus. Expression of 3 neuropeptide genes, agouti-related peptide (Agrp), neuropeptide Y (Npy), and proopiomelanocortin (Pomc), was fully normalized in dual transgenic db/db mice. The 2 transgenes in concert conferred normal fertility to male and female db/db mice. Male mice with partial peripheral deletion of Lepr, induced in the periweaning phase, did not show alterations in body composition or mass. In summary, we show that brain-specific leptin signaling is sufficient to reverse the obesity, diabetes, and infertility of db/db mice.


Journal of Biological Chemistry | 1997

The molecular genetics of rodent single gene obesities

Rudolph L. Leibel; Wendy K. Chung; Streamson C. Chua

Only three fundamental mechanisms can underlie the development of obesity: 1) relative increase in energy intake; 2) relative decrease in energy expenditure; and 3) preferential partitioning of ingested calories to fat storage. That any one of these defects is sufficient to cause obesity is demonstrated by the phenotypes of animals produced by specific transgenic manipulations as follows. 1) Disruption of the 5HT2c serotonin receptor results in hyperphagia and obesity (1). 2) Defective nonshivering thermogenesis (energy expenditure) is the major abnormality in obese mice with ablation of brown adipose tissue due to tissue-specific expression of the diphtheria toxin gene driven by the uncoupling protein promoter (2). 3) Partitioning of calories to adipose tissue is the sole metabolic abnormality in obese mice carrying a human GLUT4 transgene that is constitutively expressed exclusively in fat (3). By virtue of their effects on critical regulatory pathways of energy homeostasis, the rodent single gene obesities represent complex admixtures of these mechanisms and provide important insights into the molecular physiology of weight regulation.


Cell Metabolism | 2009

Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding

Gina M. Leinninger; Young Hwan Jo; Rebecca L. Leshan; Gwendolyn W. Louis; Hongyan Yang; Jason G. Barrera; Hilary Wilson; Darren M. Opland; Miro Faouzi; Yusong Gong; Justin C. Jones; Christopher J. Rhodes; Streamson C. Chua; Sabrina Diano; Tamas L. Horvath; Randy J. Seeley; Jill B. Becker; Heike Münzberg; Martin G. Myers

The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.


The American Journal of Clinical Nutrition | 2007

Obesity, metabolic syndrome, and prostate cancer.

Ann W. Hsing; Lori C Sakoda; Streamson C. Chua

Although obesity has been consistently linked to an increased risk of several malignancies, including cancers of the colon, gallbladder, kidney, and pancreas, its role in prostate cancer etiology remains elusive. Data on the association between obesity and prostate cancer incidence are inconsistent, and in some studies obesity is associated with an increase in risk of high-grade prostate cancer but with a decrease in risk of low-grade tumors. In contrast, obesity has been consistently associated with an increased risk of prostate cancer aggressiveness and mortality. The differential effects of obesity on subtypes of prostate cancer suggest etiologic heterogeneity in these tumors and complex interactions between androgen metabolism and several putative risk factors, including insulin resistance, diabetes, inflammation, and genetic susceptibility, on prostate cancer risk. Data on the role of abdominal obesity, insulin resistance, and metabolic syndrome in prostate cancer etiology are limited. Obesity has been shown to be associated with a state of low-grade chronic inflammation, and insulin resistance and the metabolic syndrome are associated with adverse metabolic profiles and with higher circulating concentrations of inflammation-related markers, including leptin, interleukin-6, and tumor necrosis factor-, many of which have been shown to enhance tumor growth. Thus, whether obesity and metabolic syndrome modulate the risk of prostate cancer through chronic inflammation needs to be investigated further. Given that the prevalence of obesity and metabolic syndrome is increasing worldwide and that the world population is aging, the roles of obesity and metabolic syndrome in prostate carcinogenesis warrant further clarification.


Diabetes | 1996

Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr)

Streamson C. Chua; David White; X. Sharon Wu-Peng; Shun Mei Liu; Norichika Okada; Erin E. Kershaw; Wendy K. Chung; Loraine Power-Kehoe; Melvin Chua; Louis A. Tartaglia; Rudolph L. Leibel

The rat fatty (fa) mutation produces profound obesity of early onset caused by hyperphagia, defective nonshivering thermogenesis, and preferential deposition of energy into adipose tissue. Genetic mapping studies indicate that fa and diabetes (db) are homologous loci in the rat and mouse genomes, respectively. It has been shown that db alleles carry mutations in the Lepr (leptin receptor) gene. This paper describes a point mutation in the fatty allele of Lepr. A nucleotide substitution at position 880 (A→C) causes an amino acid substitution at position 269 (Gln → Pro). The mutation generates a novel Msp I site that cosegregates with fa in 1,028 meioses examined in obese F2 progeny from two crosses (BN×13M and WKY×13M) and is still segregating in three rat colonies. PCR-based mutagenesis was used to introduce the fa mutation into the mouse Lepr cDNA. Transient transfection studies indicate that the mutant Lepr cDNA has greatly reduced binding of leptin (Lep) at the cell surface. These data are strong evidence that the single nucleotide substitution in the fa allele of Lepr (Leprfa) is responsible for the obese phenotype.

Collaboration


Dive into the Streamson C. Chua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shun Mei Liu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Young Hwan Jo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gary J. Schwartz

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Genevieve Marcelin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Philipp E. Scherer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joel K. Elmquist

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shun-Mei Liu

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge