Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart A. Cook is active.

Publication


Featured researches published by Stuart A. Cook.


The New England Journal of Medicine | 2012

Truncations of Titin Causing Dilated Cardiomyopathy

Daniel S. Herman; Lien Lam; Libin Wang; Polakit Teekakirikul; Danos C. Christodoulou; Lauren Conner; Steven R. DePalma; Barbara McDonough; Elizabeth Sparks; Debbie Lin Teodorescu; Allison L. Cirino; Nicholas R. Banner; Dudley J. Pennell; Sharon Graw; Marco Merlo; Gianfranco Sinagra; J. Martijn Bos; Michael J. Ackerman; Richard N. Mitchell; Charles E. Murry; Neal K. Lakdawala; Carolyn Y. Ho; Stuart A. Cook; Luisa Mestroni; Christine E. Seidman

BACKGROUND Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. METHODS We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. RESULTS We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P=3×10(-16)) or controls (7 of 249 [3%], P=9×10(-14)). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P≤0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P=4×10(-5)). CONCLUSIONS TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.).


Nature Genetics | 2005

Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease

Norbert Hubner; Caroline A. Wallace; Heike Zimdahl; Enrico Petretto; Herbert Schulz; Fiona Maciver; Michael Mueller; Oliver Hummel; Jan Monti; Vaclav Zidek; Alena Musilova; Vladimir Kren; Helen C. Causton; Gabriele Born; Sabine Schmidt; Anita Müller; Stuart A. Cook; Theodore W. Kurtz; John C. Whittaker; Michal Pravenec; Timothy J. Aitman

Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.


JAMA | 2013

Association of Fibrosis With Mortality and Sudden Cardiac Death in Patients With Nonischemic Dilated Cardiomyopathy

Ankur Gulati; Andrew Jabbour; Tevfik F Ismail; Kaushik Guha; Jahanzaib Khwaja; Sadaf Raza; Kishen Morarji; Tristan D.H. Brown; Nizar A. Ismail; Marc R. Dweck; Elisa Di Pietro; Michael Roughton; Ricardo Wage; Yousef Daryani; Rory O’Hanlon; Mary N. Sheppard; Francisco Alpendurada; Alexander R. Lyon; Stuart A. Cook; Martin R. Cowie; Ravi G. Assomull; Dudley J. Pennell; Sanjay Prasad

IMPORTANCE Risk stratification of patients with nonischemic dilated cardiomyopathy is primarily based on left ventricular ejection fraction (LVEF). Superior prognostic factors may improve patient selection for implantable cardioverter-defibrillators (ICDs) and other management decisions. OBJECTIVE To determine whether myocardial fibrosis (detected by late gadolinium enhancement cardiovascular magnetic resonance [LGE-CMR] imaging) is an independent and incremental predictor of mortality and sudden cardiac death (SCD) in dilated cardiomyopathy. DESIGN, SETTING, AND PATIENTS Prospective, longitudinal study of 472 patients with dilated cardiomyopathy referred to a UK center for CMR imaging between November 2000 and December 2008 after presence and extent of midwall replacement fibrosis were determined. Patients were followed up through December 2011. MAIN OUTCOME MEASURES Primary end point was all-cause mortality. Secondary end points included cardiovascular mortality or cardiac transplantation; an arrhythmic composite of SCD or aborted SCD (appropriate ICD shock, nonfatal ventricular fibrillation, or sustained ventricular tachycardia); and a composite of HF death, HF hospitalization, or cardiac transplantation. RESULTS Among the 142 patients with midwall fibrosis, there were 38 deaths (26.8%) vs 35 deaths (10.6%) among the 330 patients without fibrosis (hazard ratio [HR], 2.96 [95% CI, 1.87-4.69]; absolute risk difference, 16.2% [95% CI, 8.2%-24.2%]; P < .001) during a median follow-up of 5.3 years (2557 patient-years of follow-up). The arrhythmic composite was reached by 42 patients with fibrosis (29.6%) and 23 patients without fibrosis (7.0%) (HR, 5.24 [95% CI, 3.15-8.72]; absolute risk difference, 22.6% [95% CI, 14.6%-30.6%]; P < .001). After adjustment for LVEF and other conventional prognostic factors, both the presence of fibrosis (HR, 2.43 [95% CI, 1.50-3.92]; P < .001) and the extent (HR, 1.11 [95% CI, 1.06-1.16]; P < .001) were independently and incrementally associated with all-cause mortality. Fibrosis was also independently associated with cardiovascular mortality or cardiac transplantation (by fibrosis presence: HR, 3.22 [95% CI, 1.95-5.31], P < .001; and by fibrosis extent: HR, 1.15 [95% CI, 1.10-1.20], P < .001), SCD or aborted SCD (by fibrosis presence: HR, 4.61 [95% CI, 2.75-7.74], P < .001; and by fibrosis extent: HR, 1.10 [95% CI, 1.05-1.16], P < .001), and the HF composite (by fibrosis presence: HR, 1.62 [95% CI, 1.00-2.61], P = .049; and by fibrosis extent: HR, 1.08 [95% CI, 1.04-1.13], P < .001). Addition of fibrosis to LVEF significantly improved risk reclassification for all-cause mortality and the SCD composite (net reclassification improvement: 0.26 [95% CI, 0.11-0.41]; P = .001 and 0.29 [95% CI, 0.11-0.48]; P = .002, respectively). CONCLUSIONS AND RELEVANCE Assessment of midwall fibrosis with LGE-CMR imaging provided independent prognostic information beyond LVEF in patients with nonischemic dilated cardiomyopathy. The role of LGE-CMR in the risk stratification of dilated cardiomyopathy requires further investigation.


Journal of the American College of Cardiology | 2011

Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis.

Marc R. Dweck; Sanjiv Joshi; Timothy Murigu; Francisco Alpendurada; Andrew Jabbour; Giovanni Melina; Winston Banya; Ankur Gulati; Isabelle Roussin; Sadaf Raza; Nishant A. Prasad; Rick Wage; Cesare Quarto; Emiliano Angeloni; Simone Refice; Mary N. Sheppard; Stuart A. Cook; Philip J. Kilner; Dudley J. Pennell; David E. Newby; Raad H. Mohiaddin; John Pepper; Sanjay Prasad

OBJECTIVES The goal of this study was to assess the prognostic significance of midwall and infarct patterns of late gadolinium enhancement (LGE) in aortic stenosis. BACKGROUND Myocardial fibrosis occurs in aortic stenosis as part of the hypertrophic response. It can be detected by LGE, which is associated with an adverse prognosis in a range of other cardiac conditions. METHODS Between January 2003 and October 2008, consecutive patients with moderate or severe aortic stenosis undergoing cardiovascular magnetic resonance with administration of gadolinium contrast were enrolled into a registry. Patients were categorized into absent, midwall, or infarct patterns of LGE by blinded independent observers. Patient follow-up was completed using patient questionnaires, source record data, and the National Strategic Tracing Service. RESULTS A total of 143 patients (age 68 ± 14 years; 97 male) were followed up for 2.0 ± 1.4 years. Seventy-two underwent aortic valve replacement, and 27 died (24 cardiac, 3 sudden cardiac deaths). Compared with those with no LGE (n = 49), univariate analysis revealed that patients with midwall fibrosis (n = 54) had an 8-fold increase in all-cause mortality despite similar aortic stenosis severity and coronary artery disease burden. Patients with an infarct pattern (n = 40) had a 6-fold increase. Midwall fibrosis (hazard ratio: 5.35; 95% confidence interval: 1.16 to 24.56; p = 0.03) and ejection fraction (hazard ratio: 0.96; 95% confidence interval: 0.94 to 0.99; p = 0.01) were independent predictors of all-cause mortality by multivariate analysis. CONCLUSIONS Midwall fibrosis was an independent predictor of mortality in patients with moderate and severe aortic stenosis. It has incremental prognostic value to ejection fraction and may provide a useful method of risk stratification.


Circulation Research | 1999

Regulation of Bcl-2 Family Proteins During Development and in Response to Oxidative Stress in Cardiac Myocytes: Association With Changes in Mitochondrial Membrane Potential

Stuart A. Cook; Peter H. Sugden; Angela Clerk

Cardiac myocyte apoptosis is potentially important in many cardiac disorders. In other cells, Bcl-2 family proteins and mitochondrial dysfunction are probably key regulators of the apoptotic response. In the present study, we characterized the regulation of antiapoptotic (Bcl-2, Bcl-xL) and proapoptotic (Bad, Bax) Bcl-2 family proteins in the rat heart during development and in oxidative stress-induced apoptosis. Bcl-2 and Bcl-xL were expressed at high levels in the neonate, and their expression was sustained during development. In contrast, although Bad and Bax were present at high levels in neonatal hearts, they were barely detectable in adult hearts. We confirmed that H(2)O(2) induced cardiac myocyte cell death, stimulating poly(ADP-ribose) polymerase proteolysis (from 2 hours), caspase-3 proteolysis (from 2 hours), and DNA fragmentation (from 8 hours). In unstimulated neonatal cardiac myocytes, Bcl-2 and Bcl-xL were associated with the mitochondria, but Bad and Bax were predominantly present in a crude cytosolic fraction. Exposure of myocytes to H(2)O(2) stimulated rapid translocation of Bad (<5 minutes) to the mitochondria. This was followed by the subsequent degradation of Bad and Bcl-2 (from approximately 30 minutes). The levels of the mitochondrial membrane marker cytochrome oxidase remained unchanged. H(2)O(2) also induced translocation of cytochrome c from the mitochondria to the cytosol within 15 to 30 minutes, which was indicative of mitochondrial dysfunction. Myocytes exposed to H(2)O(2) showed an early loss of mitochondrial membrane potential (assessed by fluorescence-activated cell sorter analysis) from 15 to 30 minutes, which was partially restored by approximately 1 hour. However, a subsequent irreversible loss of mitochondrial membrane potential occurred that correlated with cell death. These data suggest that the regulation of Bcl-2 and mitochondrial function are important factors in oxidative stress-induced cardiac myocyte apoptosis.


Cardiovascular Research | 2010

MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism

Han Lu; Rachel Buchan; Stuart A. Cook

AIMS MicroRNAs (miRNAs) are important for cardiac function and tissue metabolism. The aim of the present study is to investigate the role(s) of miRNAs in the insulin-resistant heart. METHODS AND RESULTS Left ventricular biopsies were collected from patients with or without type 2 diabetes and from patients with left ventricular dysfunction. Quantitative miRNA expression analyses of 155 miRNAs revealed that miR-223 was consistently upregulated in the insulin-resistant heart. We assessed the effects of miR-223 on glucose metabolism in neonatal rat cardiomyocytes where adenoviral-mediated overexpression of miR-223 increased glucose uptake. Using in silico miRNA target prediction programs, we prioritized candidate miR-223 target genes, but observed no effect of miR-223 on myocyte enhancer factor 2c or insulin-like growth factor 1 receptor, and an unexpected miR-223-induced increase in nuclear factor IA. We next examined the effects of miR-223 on insulin signalling and glucose transport proteins. Neither phosphoinositide 3-kinase (PI3K) signalling nor AMP kinase activity was affected by miR-223 overexpression, whereas glucose transporter 4 (Glut4) protein expression was increased. miR-223 overexpression-induced Glut4 protein expression in cardiomyocytes was necessary and sufficient for increased glucose uptake as demonstrated by siRNA knockdown of Glut4. Loss-of-function studies in vivo, using a synthetic miR-223 inhibitor, confirmed the effect of miR-223 on Glut4. CONCLUSION These data demonstrate a role for miR-223 in Glut4 regulation and glucose metabolism in the heart, reveal the pleiotropic effects of miRNAs across tissues, and show that miRNAs can upregulate target genes in terminally differentiated cardiomyocytes.


Nature | 2010

A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

Matthias Heinig; Enrico Petretto; Chris Wallace; Leonardo Bottolo; Maxime Rotival; Han Lu; Yoyo Li; Rizwan Sarwar; Sarah R. Langley; Anja Bauerfeind; Oliver Hummel; Young-Ae Lee; Svetlana Paskas; Carola Rintisch; Kathrin Saar; Jason D. Cooper; Rachel Buchan; Elizabeth E. Gray; Jason G. Cyster; Jeanette Erdmann; Christian Hengstenberg; Seraya Maouche; Willem H. Ouwehand; Catherine M. Rice; Nilesh J. Samani; Heribert Schunkert; Alison H. Goodall; Herbert Schulz; Helge G. Roider; Martin Vingron

Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein–Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)—a macrophage-associated autoimmune disease—than randomly selected immune response genes (P = 8.85 × 10−6). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 × 10−10; odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D.


Nature Genetics | 2008

Distribution and functional impact of DNA copy number variation in the rat

Victor Guryev; Kathrin Saar; Tatjana Adamovic; Mark Verheul; Sebastiaan van Heesch; Stuart A. Cook; Michal Pravenec; Timothy J. Aitman; Howard J. Jacob; James D. Shull; Norbert Hubner; Edwin Cuppen

The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease.


European Heart Journal | 2011

A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy

Eric Villard; Claire Perret; Françoise Gary; Carole Proust; Gilles Dilanian; Christian Hengstenberg; Volker Ruppert; Eloisa Arbustini; Thomas Wichter; Marine Germain; Olivier Dubourg; Luigi Tavazzi; Marie-Claude Aumont; Pascal Degroote; Laurent Fauchier; Jean-Noël Trochu; Pierre Gibelin; Aupetit Jf; Klaus Stark; Jeanette Erdmann; Roland Hetzer; Angharad M. Roberts; Paul J.R. Barton; Vera Regitz-Zagrosek; Uzma Aslam; Laetitia Duboscq-Bidot; Matthias Meyborg; Bernhard Maisch; Hugo Madeira; Anders Waldenström

AIMS Dilated cardiomyopathy (DCM) is a major cause of heart failure with a high familial recurrence risk. So far, the genetics of DCM remains largely unresolved. We conducted the first genome-wide association study (GWAS) to identify loci contributing to sporadic DCM. METHODS AND RESULTS One thousand one hundred and seventy-nine DCM patients and 1108 controls contributed to the discovery phase. Pools of DNA stratified on disease status, population, age, and gender were constituted and used for testing association of DCM with 517 382 single nucleotide polymorphisms (SNPs). Three DCM-associated SNPs were confirmed by individual genotyping (P < 5.0 10(-7)), and two of them, rs10927875 and rs2234962, were replicated in independent samples (1165 DCM patients and 1302 controls), with P-values of 0.002 and 0.009, respectively. rs10927875 maps to a region on chromosome 1p36.13 which encompasses several genes among which HSPB7 has been formerly suggested to be implicated in DCM. The second identified locus involves rs2234962, a non-synonymous SNP (c.T757C, p. C151R) located within the sequence of BAG3 on chromosome 10q26. To assess whether coding mutations of BAG3 might cause monogenic forms of the disease, we sequenced BAG3 exons in 168 independent index cases diagnosed with familial DCM and identified four truncating and two missense mutations. Each mutation was heterozygous, present in all genotyped relatives affected by the disease and absent in a control group of 347 healthy individuals, strongly suggesting that these mutations are causing the disease. CONCLUSION This GWAS identified two loci involved in sporadic DCM, one of them probably implicates BAG3. Our results show that rare mutations in BAG3 contribute to monogenic forms of the disease, while common variant(s) in the same gene are implicated in sporadic DCM.


Science | 2015

Titin Mutations in iPS cells Define Sarcomere Insufficiency as a Cause of Dilated Cardiomyopathy

John T. Hinson; Anant Chopra; N. Nafissi; William J. Polacheck; Craig C. Benson; Sandra Swist; Joshua M. Gorham; Luhan Yang; Sebastian Schafer; Calvin C. Sheng; Alireza Haghighi; Jason Homsy; Norbert Hubner; George M. Church; Stuart A. Cook; Wolfgang A. Linke; Christopher S. Chen; Jonathan G. Seidman; Christine E. Seidman

A giant disruption of the heart Certain forms of heart failure originate from genetic mutations. Understanding how the culprit mutant proteins alter normal heart function could lead to more effective treatments. One candidate is the giant protein tintin, which is mutated in a subset of patients with dilated cardiomyopathy. Through a combination of patient-derived stem cells, tissue engineering, and gene editing, Hinson et al. found that disease-associated titin mutations disrupt the function of the contractile unit in heart muscle. As a result, the heart does not respond properly to mechanical and other forms of stress. Science, this issue p. 982 Mutations in titin cause heart disease by disrupting the sarcomere, which normally helps the heart adapt to stress. Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell–derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and β-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.

Collaboration


Dive into the Stuart A. Cook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roddy Walsh

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dudley J. Pennell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge