Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart A. Ralph is active.

Publication


Featured researches published by Stuart A. Ralph.


Nature | 2002

Genome sequence of the human malaria parasite Plasmodium falciparum

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.


Nature | 2008

Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

Jane M. Carlton; John H. Adams; Joana C. Silva; Shelby Bidwell; Hernan Lorenzi; Elisabet Caler; Jonathan Crabtree; Samuel V. Angiuoli; Emilio F. Merino; Paolo Amedeo; Qin Cheng; Richard M. R. Coulson; Brendan S. Crabb; Hernando A. del Portillo; Kobby Essien; Tamara V. Feldblyum; Carmen Fernandez-Becerra; Paul R. Gilson; Amy H. Gueye; Xiang Guo; Simon Kang’a; Taco W. A. Kooij; Michael L. J. Korsinczky; Esmeralda V. S. Meyer; Vish Nene; Ian T. Paulsen; Owen White; Stuart A. Ralph; Qinghu Ren; Tobias Sargeant

The human malaria parasite Plasmodium vivax is responsible for 25–40% of the ∼515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Nature Reviews Microbiology | 2004

Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast.

Stuart A. Ralph; Giel G. van Dooren; Ross F. Waller; Michael J. Crawford; Martin Fraunholz; Bernardo J. Foth; Christopher J. Tonkin; David S. Roos; Geoffrey I. McFadden

Discovery of a relict chloroplast (the apicoplast) in malarial parasites presented new opportunities for drug development. The apicoplast – although no longer photosynthetic – is essential to parasites. Combining bioinformatics approaches with experimental validation in the laboratory, we have identified more than 500 proteins predicted to function in the apicoplast. By comparison with plant chloroplasts, we have reconstructed several anabolic pathways for the parasite plastid that are fundamentally different to the analogous pathways in the human host and are potentially good targets for drug development. Products of these pathways seem to be exported from the apicoplast and might be involved in host-cell invasion.


Cell | 2005

Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites.

Lucio H. Freitas-Junior; Rosaura Hernández-Rivas; Stuart A. Ralph; Dvorak Montiel-Condado; Omar K. Ruvalcaba-Salazar; Ana Paola Rojas-Meza; Liliana Mâncio-Silva; Ricardo J. Leal-Silvestre; Alisson M. Gontijo; Spencer Shorte; Artur Scherf

Malaria parasites use antigenic variation to avoid immune clearance and increase the duration of infection in the human host. Variation at the surface of P. falciparum-infected erythrocytes is mediated by the differential control of a family of surface antigens encoded by var genes. Switching of var gene expression occurs in situ, mostly from telomere-associated loci, without detectable DNA alterations, suggesting that it is controlled by chromatin structure. We have identified chromatin modifications at telomeres that spread far into telomere-proximal regions, including var gene loci (>50 kb). One type of modification is mediated by a protein homologous to yeast Sir2 called PfSir2, which forms a chromosomal gradient of heterochromatin structure and histone hypoacetylation. Upon activation of a specific telomere-associated var gene, PfSir2 is removed from the promoter region and acetylation of histone occurs. Our data demonstrate that mutually exclusive transcription of var genes is linked to the dynamic remodeling of chromatin.


The EMBO Journal | 2001

Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes

Mark E. Wickham; Melanie Rug; Stuart A. Ralph; Nectarios Klonis; Geoffrey I. McFadden; Leann Tilley; Alan F. Cowman

After invading human erythrocytes, the malarial parasite Plasmodium falciparum, initiates a remarkable process of secreting proteins into the surrounding erythrocyte cytoplasm and plasma membrane. One of these exported proteins, the knob‐associated histidine‐rich protein (KAHRP), is essential for microvascular sequestration, a strategy whereby infected red cells adhere via knob structures to capillary walls and thus avoid being eliminated by the spleen. This cytoadherence is an important factor in many of the deaths caused by malaria. Green fluorescent protein fusions and fluorescence recovery after photobleaching were used to follow the pathway of KAHRP deployment from the parasite endomembrane system into an intermediate depot between parasite and host, then onwards to the erythrocyte cytoplasm and eventually into knobs. Sequence elements essential to individual steps in the pathway are defined and we show that parasite‐derived structures, known as Maurers clefts, are an elaboration of the canonical secretory pathway that is transposed outside the parasite into the host cell, the first example of its kind in eukaryotic biology.


Nature Reviews Drug Discovery | 2008

Genomic-scale prioritization of drug targets: the TDR Targets database

Fernán Agüero; Bissan Al-Lazikani; Martin Aslett; Matthew Berriman; Frederick S. Buckner; Robert K. Campbell; Santiago J. Carmona; Ian M. Carruthers; A.W. Edith Chan; Feng Chen; Gregory J. Crowther; Maria A. Doyle; Christiane Hertz-Fowler; Andrew L. Hopkins; Gregg McAllister; Solomon Nwaka; John P. Overington; Arnab Pain; Gaia V. Paolini; Ursula Pieper; Stuart A. Ralph; Aaron Riechers; David S. Roos; Andrej Sali; Dhanasekaran Shanmugam; Takashi Suzuki; Wesley C. Van Voorhis; Christophe L. M. J. Verlinde

The increasing availability of genomic data for pathogens that cause tropical diseases has created new opportunities for drug discovery and development. However, if the potential of such data is to be fully exploited, the data must be effectively integrated and be easy to interrogate. Here, we discuss the development of the TDR Targets database (http://tdrtargets.org), which encompasses extensive genetic, biochemical and pharmacological data related to tropical disease pathogens, as well as computationally predicted druggability for potential targets and compound desirability information. By allowing the integration and weighting of this information, this database aims to facilitate the identification and prioritization of candidate drug targets for pathogens.


The EMBO Journal | 2003

Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes

Manoj T. Duraisingh; Tony Triglia; Stuart A. Ralph; Julian C. Rayner; John W. Barnwell; Geoffrey I. McFadden; Alan F. Cowman

The members of the phylum Apicomplexa parasitize a wide range of eukaryotic host cells. Plasmodium falciparum, responsible for the most virulent form of malaria, invades human erythrocytes using several specific and high affinity ligand–receptor interactions that define invasion pathways. We find that members of the P.falciparum reticulocyte‐binding homolog protein family, PfRh2a and PfRh2b, are expressed variantly in different lines. Targeted gene disruption shows that PfRh2b mediates a novel invasion pathway and that it functions independently of other related proteins. Phenotypic variation of the PfRh protein family allows P.falciparum to exploit different patterns of receptors on the erythrocyte surface and thereby respond to polymorphisms in erythrocyte receptors and to evade the host immune system.


PLOS Biology | 2009

Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum.

Christopher J. Tonkin; Celine Carret; Manoj T. Duraisingh; Till S. Voss; Stuart A. Ralph; Mirja Hommel; Michael F. Duffy; Liliana Mancio da Silva; Artur Scherf; Alasdair Ivens; Terence P. Speed; James G. Beeson; Alan F. Cowman

Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulators A and B (PfSir2A and PfSir2B) and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD(+)-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection.


Gene | 2001

Deciphering apicoplast targeting signals – feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins

Jochen Zuegge; Stuart A. Ralph; Michael Schmuker; Geoffrey I. McFadden; Gisbert Schneider

The malaria causing protozoan Plasmodium falciparum contains a vestigal, non-photosynthetic plastid, the apicoplast. Numerous proteins encoded by nuclear genes are targeted to the apicoplast courtesy of N-terminal extensions. With the impending sequence completion of an entire genome of the malaria parasite, it is important to have software tools in place for prediction of subcellular locations for all proteins. Apicoplast targeting signals are bipartite; containing a signal peptide and a transit peptide. Nuclear-encoded apicoplast protein precursors were analyzed for characteristic features by statistical methods, principal component analysis, self-organizing maps, and supervised neural networks. The transit peptide contains a net positive charge and is rich in asparagine, lysine, and isoleucine residues. A novel prediction system (PATS, predict apicoplast-targeted sequences) was developed based on various sequence features, yielding a Matthews correlation coefficient of 0.91 (97% correct predictions) in a 40-fold cross-validation study. This system predicted 22% apicoplast proteins of the 205 potential proteins on P. falciparum chromosome 2, and 21% of 243 chromosome 3 proteins. A combination of the PATS results with a signal peptide prediction yields 15% potentially nuclear-encoded apicoplast proteins on chromosomes 2 and 3. The prediction tool will advance P. falciparum genome analysis, and it might help to identify apicoplast proteins as drug targets for the development of novel anti-malaria agents.


Journal of Biological Chemistry | 2010

Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites

Dave Richard; Christopher A. MacRaild; David T. Riglar; Jo-Anne Chan; Michael Foley; Jake Baum; Stuart A. Ralph; Raymond S. Norton; Alan F. Cowman

Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.

Collaboration


Dive into the Stuart A. Ralph's collaboration.

Top Co-Authors

Avatar

Alan F. Cowman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake Baum

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Roos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Tonkin

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Maria A. Doyle

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge