Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart A. Wallis is active.

Publication


Featured researches published by Stuart A. Wallis.


Journal of Vision | 2007

Contextual modulation involves suppression and facilitation from the center and the surround

Timothy S. Meese; Robert J. Summers; David J. Holmes; Stuart A. Wallis

In psychophysics, cross-orientation suppression (XOS) and cross-orientation facilitation (XOF) have been measured by investigating mask configuration on the detection threshold of a centrally placed patch of sine-wave grating. Much of the evidence for XOS and XOF comes from studies using low and high spatial frequencies, respectively, where the interactions are thought to arise from within (XOS) and outside (XOF) the footprint of the classical receptive field. We address the relation between these processes here by measuring the effects of various sizes of superimposed and annular cross-oriented masks on detection thresholds at two spatial scales (1 and 7 c/deg) and on contrast increment thresholds at 7 c/deg. A functional model of our results indicates the following (1) XOS and XOF both occur for superimposed and annular masks. (2) XOS declines with spatial frequency but XOF does not. (3) The spatial extent of the interactions does not scale with spatial frequency, meaning that surround-effects are seen primarily at high spatial frequencies. (4) There are two distinct processes involved in XOS: direct divisive suppression and modulation of self-suppression. (5) Whether XOS or XOF wins out depends upon their relative weights and mask contrast. These results prompt enquiry into the effect of spatial frequency at the single-cell level and place new constraints on image-processing models of early visual processing.


Vision Research | 2013

The slope of the psychometric function and non-stationarity of thresholds in spatiotemporal contrast vision.

Stuart A. Wallis; Daniel H. Baker; Timothy S. Meese; Mark A. Georgeson

The slope of the two-interval, forced-choice psychometric function (e.g. the Weibull parameter, β) provides valuable information about the relationship between contrast sensitivity and signal strength. However, little is known about how or whether β varies with stimulus parameters such as spatiotemporal frequency and stimulus size and shape. A second unresolved issue concerns the best way to estimate the slope of the psychometric function. For example, if an observer is non-stationary (e.g. their threshold drifts between experimental sessions), β will be underestimated if curve fitting is performed after collapsing the data across experimental sessions. We measured psychometric functions for 2 experienced observers for 14 different spatiotemporal configurations of pulsed or flickering grating patches and bars on each of 8 days. We found β≈3 to be fairly constant across almost all conditions, consistent with a fixed nonlinear contrast transducer and/or a constant level of intrinsic stimulus uncertainty (e.g. a square law transducer and a low level of intrinsic uncertainty). Our analysis showed that estimating a single β from results averaged over several experimental sessions was slightly more accurate than averaging multiple estimates from several experimental sessions. However, the small levels of non-stationarity (SD≈0.8dB) meant that the difference between the estimates was, in practice, negligible.


Vision Research | 2012

Nonlinearities in the binocular combination of luminance and contrast

Daniel H. Baker; Stuart A. Wallis; Mark A. Georgeson; Timothy S. Meese

We studied the rules by which visual responses to luminous targets are combined across the two eyes. Previous work has found very different forms of binocular combination for targets defined by increments and by decrements of luminance, with decrement data implying a severe nonlinearity before binocular combination. We ask whether this difference is due to the luminance of the target, the luminance of the background, or the sign of the luminance excursion. We estimated the pre-binocular nonlinearity (power exponent) by fitting a computational model to ocular equibrightness matches. The severity of the nonlinearity had a monotonic dependence on the signed difference between target and background luminance. For dual targets, in which there was both a luminance increment and a luminance decrement (e.g. contrast), perception was governed largely by the decrement. The asymmetry in the nonlinearities derived from the subjective matching data made a clear prediction for visual performance: there should be more binocular summation for detecting luminance increments than for detecting luminance decrements. This prediction was confirmed by the results of a subsequent experiment. We discuss the relation between these results and luminance nonlinearities such as a logarithmic transform, as well as the involvement of contemporary model architectures of binocular vision.


PLOS ONE | 2012

The effect of interocular phase difference on perceived contrast.

Daniel H. Baker; Stuart A. Wallis; Mark A. Georgeson; Timothy S. Meese

Binocular vision is traditionally treated as two processes: the fusion of similar images, and the interocular suppression of dissimilar images (e.g. binocular rivalry). Recent work has demonstrated that interocular suppression is phase-insensitive, whereas binocular summation occurs only when stimuli are in phase. But how do these processes affect our perception of binocular contrast? We measured perceived contrast using a matching paradigm for a wide range of interocular phase offsets (0–180°) and matching contrasts (2–32%). Our results revealed a complex interaction between contrast and interocular phase. At low contrasts, perceived contrast reduced monotonically with increasing phase offset, by up to a factor of 1.6. At higher contrasts the pattern was non-monotonic: perceived contrast was veridical for in-phase and antiphase conditions, and monocular presentation, but increased a little at intermediate phase angles. These findings challenge a recent model in which contrast perception is phase-invariant. The results were predicted by a binocular contrast gain control model. The model involves monocular gain controls with interocular suppression from positive and negative phase channels, followed by summation across eyes and then across space. Importantly, this model—applied to conditions with vertical disparity—has only a single (zero) disparity channel and embodies both fusion and suppression processes within a single framework.


Ophthalmic and Physiological Optics | 2014

Binocular fusion, suppression and diplopia for blurred edges.

Mark A. Georgeson; Stuart A. Wallis

(1) To devise a model‐based method for estimating the probabilities of binocular fusion, interocular suppression and diplopia from psychophysical judgements, (2) To map out the way fusion, suppression and diplopia vary with binocular disparity and blur of single edges shown to each eye, (3) To compare the binocular interactions found for edges of the same vs opposite contrast polarity.


Journal of Vision | 2012

Mach bands and multiscale models of spatial vision: The role of first, second, and third derivative operators in encoding bars and edges

Stuart A. Wallis; Mark A. Georgeson

Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners, controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in contrast (20%-80%) and duration (50-300 ms) had relatively minor effects. These results rule out the idea that Mach bands depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well. Mach bands thus shed new light on the role of multiscale filtering systems in feature coding.


Ageing & Society | 2017

Transition from community dwelling to retirement village in older adults: cognitive functioning and psychological health outcomes

Carol Holland; Alexis Boukouvalas; Stuart A. Wallis; Danielle Clarkesmith; Richard Cooke; Leanne Liddell; Amanda Kay

ABSTRACT Supported living and retirement villages are becoming a significant option for older adults with impairments, with independence concerns or for forward planning in older age, but evidence as to psychological benefits for residents is sparse. This study examined the hypothesis that the multi-component advantages of moving into a supported and physically and socially accessible ‘extra-care’ independent living environment will impact on psychological and functioning measures. Using an observational longitudinal design, 161 new residents were assessed initially and three months later, in comparison to 33 older adults staying in their original homes. Initial group differences were apparent but some reduced after three months. Residents showed improvement in depression, perceived health, aspects of cognitive function and reduced functional limitations, while controls showed increased functional limitations (worsening). Ability to recall specific autobiographical memories, known to be related to social problem solving, depression and functioning in social relationships, predicted change in communication limitations, and cognitive change predicted changes in recreational limitations. Change in anxiety and memory predicted change in depression. Findings suggest that older adults with independent living concerns who move to an independent but supported environment can show significant benefits in psychological outcomes and reduction in perceived impact of health on functional limitations in a short period. Targets for focused rehabilitation are indicated, but findings also validate development of untargeted general supportive environments.


Vision Research | 2009

Mach edges: local features predicted by 3rd derivative spatial filtering

Stuart A. Wallis; Mark A. Georgeson

Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.


Scientific Reports | 2018

Word Mode: a crowding-free reading protocol for individuals with macular disease

Stuart A. Wallis; Yit C. Yang; Stephen J. Anderson

Central retinal loss through macular disease markedly reduces the ability to read largely because identification of a word using peripheral vision is negatively influenced by nearby text, a phenomenon termed visual crowding. Here, we present a novel peripheral reading protocol, termed Word Mode, that eliminates crowding by presenting each word in isolation but in a position that mimics its natural position in the line of text being read, with each new word elicited using a self-paced button press. We used a gaze-contingent paradigm to simulate a central scotoma in four normally-sighted observers, and measured oral reading speed for text positioned 7.5° in the inferior field. Compared with reading whole sentences, our crowding-free protocol increased peripheral reading speeds by up to a factor of seven, resulted in significantly fewer reading errors and fixations per sentence, and reduced both the critical print size and the text size required for spot reading by 0.2–0.3 logMAR. We conclude that the level of reading efficiency afforded by the crowding-free reading protocol Word Mode may return reading as a viable activity to many individuals with macular disease.


I-perception | 2012

What is Binocular Fusion

Stuart A. Wallis; Mark A. Georgeson

When images in the two eyes are sufficiently similar, they are ‘fused’. Fusion has motor (vergence) and sensory components. When vergence is prevented, sensory ‘fusion’ of disparate images still occurs, but the nature of this fusion has received curiously little attention. Summation of signals from the two eyes is fairly well understood and seems the obvious basis for fusion. But summation of disparate edges should cause the fused edge to appear more blurred. We tested this by studying the perceived blur of single edges with vertical disparities that spanned fusion and diplopia. Single, horizontal, Gaussian-blurred edges (blur, B=1.6 to 40 minarc) were presented to each eye at various disparities (0 to 4B), or were added together in the same eye (monoptic control). Perceived blur was measured by blur-matching, using a two-interval forced-choice method. In monoptic conditions, matched blur increased with disparity in the fusional range (0 to 2B) as expected. But, surprisingly, when the two edges were in di...

Collaboration


Dive into the Stuart A. Wallis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge