Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart D. Shumway is active.

Publication


Featured researches published by Stuart D. Shumway.


Clinical Cancer Research | 2011

MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts

N. V. Rajeshkumar; Elizabeth De Oliveira; Niki A. Ottenhof; James Watters; David G. Brooks; Tim Demuth; Stuart D. Shumway; Hiroshi Hirai; Anirban Maitra; Manuel Hidalgo

Purpose: Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine (GEM) using a panel of p53-deficient and p53 wild-type human pancreatic cancer xenografts. Experimental Design: Nine individual patient-derived pancreatic cancer xenografts (6 with p53-deficient and 3 with p53 wild-type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, GEM, or GEM followed 24 hour later by MK-1775, for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by Western blotting and immunohistochemistry. Results: MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with GEM, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and GEM-treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of GEM with MK-1775 produced robust antitumor activity and remarkably enhanced tumor regression response (4.01-fold) compared to GEM treatment in p53-deficient tumors. Tumor regrowth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of GEM. None of the agents produced tumor regressions in p53 wild-type xenografts. Conclusions: These results indicate that MK-1775 selectively synergizes with GEM to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res; 17(9); 2799–806. ©2011 AACR.


Cancer Discovery | 2012

Forced Mitotic Entry of S-Phase Cells as a Therapeutic Strategy Induced by Inhibition of WEE1

Marieke Aarts; Rachel Sharpe; Isaac Garcia-Murillas; Heidrun Gevensleben; Melissa S. Hurd; Stuart D. Shumway; Carlo Toniatti; Alan Ashworth; Nicholas C. Turner

Inhibition of the protein kinase WEE1 synergizes with chemotherapy in preclinical models and WEE1 inhibitors are being explored as potential cancer therapies. Here, we investigate the mechanism that underlies this synergy. We show that WEE1 inhibition forces S-phase-arrested cells directly into mitosis without completing DNA synthesis, resulting in highly abnormal mitoses characterized by dispersed chromosomes and disorganized bipolar spindles, ultimately resulting in mitotic exit with gross micronuclei formation and apoptosis. This mechanism of cell death is shared by CHK1 inhibitors, and combined WEE1 and CHK1 inhibition forces mitotic entry from S-phase in the absence of chemotherapy. We show that p53/p21 inactivation combined with high expression of mitotic cyclins and EZH2 predispose to mitotic entry during S-phase with cells reliant on WEE1 to prevent premature cyclin-dependent kinase (CDK)1 activation. These features are characteristic of aggressive breast, and other, cancers for which WEE1 inhibitor combinations represent a promising targeted therapy.


Molecular Cancer Therapeutics | 2013

Preclinical Evaluation of the WEE1 Inhibitor MK-1775 as Single-Agent Anticancer Therapy

Amy D. Guertin; Jing Li; Liu Y; Melissa S. Hurd; Alwin Schuller; Brian Long; Hirsch Ha; Igor Feldman; Yair Benita; Carlo Toniatti; Leigh Zawel; Stephen Fawell; Gilliland Dg; Stuart D. Shumway

Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775–induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC50 of MK-1775 by five-fold but has no effect on the cell-based response to other cytotoxic drugs. In addition, knockdown of PKMYT1 increases markers of DNA damage, γH2AX and pCHK1S345, induced by MK-1775. In a post hoc analysis of 305 cell lines treated with MK-1775, we found that expression of PKMYT1 was below average in 73% of the 33 most sensitive cell lines. Our findings provide rationale for WEE1 inhibition as a potent anticancer therapy independent of a genotoxic partner and suggest that low PKMYT1 expression could serve as an enrichment biomarker for MK-1775 sensitivity. Mol Cancer Ther; 12(8); 1442–52. ©2013 AACR.


Cancer Research | 2013

Combination Therapy Targeting the Chk1 and Wee1 Kinases Shows Therapeutic Efficacy in Neuroblastoma

Mike R. Russell; Kirill Levin; JulieAnn Rader; Lili T. Belcastro; Yimei Li; Daniel Martinez; Bruce R. Pawel; Stuart D. Shumway; John M. Maris; Kristina A. Cole

Neuroblastoma is uniquely sensitive to single-agent inhibition of the DNA damage checkpoint kinase Chk1, leading us to examine downstream effectors of this pathway and identify mitotic regulator Wee1 as an additional therapeutic target in this disease. Wee1 was overexpressed in both neuroblastoma cell lines and high-risk patient tumors. Genetic or pharmacologic abrogation of Wee1 signaling results in marked cytotoxicity in 10 of 11 neuroblastoma cell lines with a median IC(50) of 300 nmol/L for the Wee1-selective small-molecule inhibitor MK-1775. Murine tumor lines derived from mice that were either heterozygous or homozygous for MycN were particularly sensitive to single-agent inhibition of Wee1 (IC(50)s of 160 and 62 nmol/L, respectively). Simultaneous pharmacologic inhibition of Chk1 and Wee1 acted in a synergistic fashion to further impede neuroblastoma cell growth in vitro, in a manner greater than the individual inhibitors either alone or combined with chemotherapy. Combination Chk1 and Wee1 inhibition also revealed in vivo efficacy in neuroblastoma xenografts. Taken together, our results show that neuroblastoma cells depend on Wee1 activity for growth and that inhibition of this kinase may serve as a therapeutic for patients with neuroblastoma.


Molecular Cancer Therapeutics | 2011

Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines.

Bhaswati Sarcar; Soumen Kahali; Antony Prabhu; Stuart D. Shumway; Yang Xu; Tim Demuth; Prakash Chinnaiyan

The purpose of this study was to determine the capacity of MK-1775, a potent Wee-1 inhibitor, to abrogate the radiation-induced G2 checkpoint arrest and modulate radiosensitivity in glioblastoma cell models and normal human astrocytes. The radiation-induced checkpoint response of established glioblastoma cell lines, glioblastoma neural stem (GNS) cells, and astrocytes were determined in vitro by flow cytometry and in vivo by mitosis-specific staining using immunohistochemistry. Mechanisms underlying MK-1775 radiosensitization were determined by mitotic catastrophe and γH2AX expression. Radiosensitivity was determined in vitro by the clonogenic assay and in vivo by tumor growth delay. MK-1775 abrogated the radiation-induced G2 checkpoint and enhanced radiosensitivity in established glioblastoma cell lines in vitro and in vivo, without modulating radiation response in normal human astrocytes. MK-1775 appeared to attenuate the early-phase of the G2 checkpoint arrest in GNS cell lines, although the arrest was not sustained and did not lead to increased radiosensitivity. These results show that MK-1775 can selectively enhance radiosensitivity in established glioblastoma cell lines. Further work is required to determine the role Wee-1 plays in checkpoint activation of GNS cells. Mol Cancer Ther; 10(12); 2405–14. ©2011 AACR.


Cancer Cell International | 2012

Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition.

Amy D. Guertin; Melissa M. Martin; Brian Roberts; Melissa S. Hurd; Xianlu Qu; Nathan R. Miselis; Yaping Liu; Jing Li; Igor Feldman; Yair Benita; Andrew Bloecher; Carlo Toniatti; Stuart D. Shumway

BackgroundInhibition of kinases involved in the DNA damage response sensitizes cells to genotoxic agents by abrogating checkpoint-induced cell cycle arrest. CHK1 and WEE1 act in a pathway upstream of CDK1 to inhibit cell cycle progression in response to damaged DNA. Therapeutic targeting of either CHK1 or WEE1, in combination with chemotherapy, is under clinical evaluation. These studies examine the overlap and potential for synergy when CHK1 and WEE1 are inhibited in cancer cell models.MethodsSmall molecules MK-8776 and MK-1775 were used to selectively and potently inhibit CHK1 and WEE1, respectively.ResultsIn vitro, the combination of MK-8776 and MK-1775 induces up to 50-fold more DNA damage than either MK-8776 or MK-1775 alone at a fixed concentration. This requires aberrant cyclin-dependent kinase activity but does not appear to be dependent on p53 status alone. Furthermore, DNA damage takes place primarily in S-phase cells, implying disrupted DNA replication. When dosed together, the combination of MK-8776 and MK-1775 induced more intense and more durable DNA damage as well as anti-tumor efficacy than either MK-8776 or MK-1775 dosed alone. DNA damage induced by the combination was detected in up to 40% of cells in a treated xenograft tumor model.ConclusionsThese results highlight the roles of WEE1 and CHK1 in maintaining genomic integrity. Importantly, the strong synergy observed upon inhibition of both kinases suggests unique yet complimentary anti-tumor effects of WEE1 and CHK1 inhibition. This demonstration of DNA double strand breaks in the absence of a DNA damaging chemotherapeutic provides preclinical rationale for combining WEE1 and CHK1 inhibitors as a cancer treatment regimen.


Clinical Cancer Research | 2015

The Efficacy of the Wee1 Inhibitor MK-1775 Combined with Temozolomide Is Limited by Heterogeneous Distribution across the Blood–Brain Barrier in Glioblastoma

Jenny L. Pokorny; David Calligaris; Shiv K. Gupta; Dennis O. Iyekegbe; Dustin Mueller; Katrina Bakken; Brett L. Carlson; Mark A. Schroeder; Debra Evans; Zhenkun Lou; Paul A. Decker; Jeanette E. Eckel-Passow; Vincenzo Pucci; Bennett Ma; Stuart D. Shumway; William F. Elmquist; Nathalie Y. R. Agar; Jann N. Sarkaria

Purpose: Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in glioblastoma multiforme (GBM) xenograft models alone and in combination with radiation and/or temozolomide. Experimental Design: In vitro MK-1775 efficacy alone and in combination with temozolomide, and the impact on DNA damage, was analyzed by Western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI)-MS imaging. Results: GBM22 (IC50 = 68 nmol/L) was significantly more sensitive to MK-1775 compared with five other GBM xenograft lines, including GBM6 (IC50 >300 nmol/L), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with temozolomide in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with temozolomide, whereas in a flank model of GBM22, MK-1775 exhibited both single-agent and combinatorial activity with temozolomide. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared with heterotopic GBM22 tumors. Conclusions: Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. Clin Cancer Res; 21(8); 1916–24. ©2015 AACR.


Journal of Clinical Oncology | 2016

Phase I Study Evaluating WEE1 Inhibitor AZD1775 As Monotherapy and in Combination With Gemcitabine, Cisplatin, or Carboplatin in Patients With Advanced Solid Tumors

Suzanne Leijen; Robin Van Geel; Anna C. Pavlick; Raoul Tibes; Lee S. Rosen; Albiruni R. A. Razak; Raymond Lam; Tim Demuth; Shelonitda Rose; Mark Anthony Lee; Tomoko Freshwater; Stuart D. Shumway; Li Wen Liang; Amit M. Oza; Jan H. M. Schellens; Geoffrey I. Shapiro

Purpose AZD1775 is a WEE1 kinase inhibitor targeting G2 checkpoint control, preferentially sensitizing TP53-deficient tumor cells to DNA damage. This phase I study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of oral AZD1775 as monotherapy or in combination with chemotherapy in patients with refractory solid tumors. Patients and Methods In part 1, patients received a single dose of AZD1775 followed by 14 days of observation. In part 2, patients received AZD1775 as a single dose (part 2A) or as five twice per day doses or two once per day doses (part 2B) in combination with one of the following chemotherapy agents: gemcitabine (1,000 mg/m2), cisplatin (75 mg/m2), or carboplatin (area under the curve, 5 mg/mL⋅min). Skin biopsies were collected for pharmacodynamic assessments. TP53 status was determined retrospectively in archival tumor tissue. Results Two hundred two patients were enrolled onto the study, including nine patients in part 1, 43 in part 2A (including eight rollover patients from part 1), and 158 in part 2B. AZD1775 monotherapy given as single dose was well tolerated, and the maximum-tolerated dose was not reached. In the combination regimens, the most common adverse events consisted of fatigue, nausea and vomiting, diarrhea, and hematologic toxicity. The maximum-tolerated doses and biologically effective doses were established for each combination. Target engagement, as a predefined 50% pCDK1 reduction in surrogate tissue, was observed in combination with cisplatin and carboplatin. Of 176 patients evaluable for efficacy, 94 (53%) had stable disease as best response, and 17 (10%) achieved a partial response. The response rate in TP53-mutated patients (n = 19) was 21% compared with 12% in TP53 wild-type patients (n = 33). Conclusion AZD1775 was safe and tolerable as a single agent and in combination with chemotherapy at doses associated with target engagement.


Oncotarget | 2016

MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells

Kathleen Bridges; Xingxing Chen; Huifeng Liu; Crosby D. Rock; Thomas A. Buchholz; Stuart D. Shumway; Heath D. Skinner; Raymond E. Meyn

Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation.


Molecular Cancer Therapeutics | 2016

An Unbiased Oncology Compound Screen to Identify Novel Combination Strategies

Jennifer O'Neil; Yair Benita; Igor Feldman; Melissa Chenard; Brian Roberts; Yaping Liu; Jing Li; Astrid M. Kral; Serguei Lejnine; Andrey Loboda; William T. Arthur; Razvan Cristescu; Brian B. Haines; Christopher Winter; Theresa Zhang; Andrew Bloecher; Stuart D. Shumway

Combination drug therapy is a widely used paradigm for managing numerous human malignancies. In cancer treatment, additive and/or synergistic drug combinations can convert weakly efficacious monotherapies into regimens that produce robust antitumor activity. This can be explained in part through pathway interdependencies that are critical for cancer cell proliferation and survival. However, identification of the various interdependencies is difficult due to the complex molecular circuitry that underlies tumor development and progression. Here, we present a high-throughput platform that allows for an unbiased identification of synergistic and efficacious drug combinations. In a screen of 22,737 experiments of 583 doublet combinations in 39 diverse cancer cell lines using a 4 by 4 dosing regimen, both well-known and novel synergistic and efficacious combinations were identified. Here, we present an example of one such novel combination, a Wee1 inhibitor (AZD1775) and an mTOR inhibitor (ridaforolimus), and demonstrate that the combination potently and synergistically inhibits cancer cell growth in vitro and in vivo. This approach has identified novel combinations that would be difficult to reliably predict based purely on our current understanding of cancer cell biology. Mol Cancer Ther; 15(6); 1155–62. ©2016 AACR.

Collaboration


Dive into the Stuart D. Shumway's collaboration.

Researchain Logo
Decentralizing Knowledge