Stuart H. Ralston
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart H. Ralston.
Nature Genetics | 2008
Veronique Vitart; Igor Rudan; Caroline Hayward; Nicola K. Gray; James A B Floyd; Colin N. A. Palmer; Sara Knott; Ivana Kolcic; Ozren Polasek; Juergen Graessler; James F. Wilson; Anthony Marinaki; Philip L. Riches; Xinhua Shu; Branka Janićijević; Nina Smolej-Narančić; Barbara Gorgoni; J.E. Morgan; Susan Campbell; Zrinka Biloglav; Lovorka Barac-Lauc; Marijana Peričić; Irena Martinović Klarić; Lina Zgaga; Tatjana Škarić-Jurić; Sarah H. Wild; William A. Richardson; Peter Hohenstein; Charley H. Kimber; Albert Tenesa
Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200–500 μM) compared with other mammals (3–120 μM). About 70% of daily urate disposal occurs via the kidneys, and in 5–25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7–5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.
Nature Genetics | 2009
Fernando Rivadeneira; Unnur Styrkarsdottir; Karol Estrada; Bjarni V. Halldórsson; Yi-Hsiang Hsu; J. Brent Richards; M. Carola Zillikens; Fotini K. Kavvoura; Najaf Amin; Yurii S. Aulchenko; L. Adrienne Cupples; Panagiotis Deloukas; Serkalem Demissie; Elin Grundberg; Albert Hofman; Augustine Kong; David Karasik; Joyce B. J. van Meurs; Ben A. Oostra; Tomi Pastinen; Huibert A. P. Pols; Gunnar Sigurdsson; Nicole Soranzo; Gudmar Thorleifsson; Unnur Thorsteinsdottir; Frances M. K. Williams; Scott G. Wilson; Yanhua Zhou; Stuart H. Ralston; Cornelia M. van Duijn
Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 × 10−8), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD.
Nature Genetics | 2000
Anne E. Hughes; Stuart H. Ralston; John S. Marken; Christine Bell; Heather MacPherson; Richard G.H. Wallace; Wim Van Hul; Michael P. Whyte; Kyoshi Nakatsuka; Louis Hovy; Dirk Michael Anderson
Familial expansile osteolysis (FEO, MIM 174810) is a rare, autosomal dominant bone disorder characterized by focal areas of increased bone remodelling. The osteolytic lesions, which develop usually in the long bones during early adulthood, show increased osteoblast and osteoclast activity. Our previous linkage studies mapped the gene responsible for FEO to an interval of less than 5 cM between D18S64 and D18S51 on chromosome 18q21.2–21.3 in a large Northern Irish family. The gene encoding receptor activator of nuclear factor-κ B (RANK; ref. 5), TNFRSF11A, maps to this region. RANK is essential in osteoclast formation. We identified two heterozygous insertion mutations in exon 1 of TNFRSF11A in affected members of four families with FEO or familial Paget disease of bone (PDB). One was a duplication of 18 bases and the other a duplication of 27 bases, both of which affected the signal peptide region of the RANK molecule. Expression of recombinant forms of the mutant RANK proteins revealed perturbations in expression levels and lack of normal cleavage of the signal peptide. Both mutations caused an increase in RANK-mediated nuclear factor-κB (NF-κB) signalling in vitro, consistent with the presence of an activating mutation.
The New England Journal of Medicine | 1998
André G. Uitterlinden; Huibert Burger; Qiuju Huang; Fang Yue; Fiona McGuigan; Struan F. A. Grant; Huib Pols; Stuart H. Ralston; Hans van Leeuwen; Albert Hofman
BACKGROUND Osteoporosis is a common disorder with a strong genetic component. One way in which the genetic component could be expressed is through polymorphism of COLIA1, the gene for collagen type Ialpha1, a bone-matrix protein. METHODS We determined the COLIA1 genotypes SS, Ss, and ss in a population-based sample of 1778 postmenopausal women using a polymerase-chain-reaction-based assay. We then related the genotypes to bone mineral density and the occurrence of osteoporotic fractures in these women. RESULTS As compared with the 1194 women with the SS genotype, the 526 women with the Ss genotype had 2 percent lower bone mineral density at the femoral neck (P=0.003) and the lumbar spine (P=0.02); the 58 women with the ss genotype had reductions of 4 percent at the femoral neck (P= 0.05) and 6 percent at the lumbar spine (P=0.005). These differences increased with age (P=0.01 for modification by age of the effect of COLIA1 on femoral-neck bone density, and P=0.004 for modification of the effect on lumbar-spine bone density). Women with the Ss and ss genotypes were overrepresented among the 111 women who had incident nonvertebral fractures (relative risk per copy of the s allele, 1.5; 95 percent confidence interval, 1.1 to 2.1). CONCLUSIONS The COLIA1 polymorphism is associated with reduced bone density and predisposes women to osteoporotic fractures.
Journal of Bone and Mineral Research | 2000
Fraser P. Coxon; Miep H. Helfrich; Rob van't Hof; Said M. Sebti; Stuart H. Ralston; Andrew D. Hamilton; Michael J. Rogers
Bisphosphonates are the important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Although their molecular mechanism of action has not been fully elucidated, recent studies have shown that the nitrogen‐containing bisphosphonates can inhibit protein prenylation in macrophages in vitro. In this study, we show that the nitrogen‐containing bisphosphonates risedronate, zoledronate, ibandronate, alendronate, and pamidronate (but not the non nitrogen‐containing bisphosphonates clodronate, etidronate, and tiludronate) prevent the incorporation of [14C]mevalonate into prenylated (farnesylated and geranylgeranylated) proteins in purified rabbit osteoclasts. The inhibitory effect of nitrogen‐containing bisphosphonates on bone resorption is likely to result largely from the loss of geranylgeranylated proteins rather than loss of farnesylated proteins in osteoclasts, because concentrations of GGTI‐298 (a specific inhibitor of geranylgeranyl transferase I) that inhibited protein geranylgeranylation in purified rabbit osteoclasts prevented osteoclast formation in murine bone marrow cultures, disrupted the osteoclast cytoskeleton, inhibited bone resorption, and induced apoptosis in isolated chick and rabbit osteoclasts in vitro. By contrast, concentrations of FTI‐277 (a specific inhibitor of farnesyl transferase) that prevented protein farnesylation in purified rabbit osteoclasts had little effect on osteoclast morphology or apoptosis and did not inhibit bone resorption. These results therefore show the molecular mechanism of action of nitrogen‐containing bisphosphonate drugs in osteoclasts and highlight the fundamental importance of geranylgeranylated proteins in osteoclast formation and function.
Journal of Internal Medicine | 1998
Richard Eastell; David M. Reid; Juliet Compston; C Cooper; Ignac Fogelman; Roger M. Francis; D. J. Hosking; D. W. Purdie; Stuart H. Ralston; J. Reeve; R. G. G. Russell; J. C. Stevenson; David Torgerson
Abstract. Eastell R, Reid DM, Compston J, Cooper C, Fogelman I, Francis RM, Hosking DJ, Purdie DW, Ralston SH, Reeve J, Russell RGG, Stevenson JC, Torgerson DJ (University of Sheffield Medical School, Sheffield; University of Aberdeen, Aberdeen; University of Cambridge School of Clinical Medicine, Addenbrookes Hospital, Cambridge; Southampton General Hospital, Southampton; Guys Hospital, London; Freeman Hospital, Newcastle upon Tyne; Nottingham City Hospital, Nottingham; Hull Royal Infirmary, Hull; Wynn Institute for Metabolic Research, London; and the University of York, York, UK). A UK Consensus Group on management of glucocorticoid‐induced osteoporosis: an update (Review). J Intern Med 1998; 244: 271–292.
Nature Medicine | 2005
Aymen I. Idris; Rob van't Hof; Iain R. Greig; Susan A Ridge; David Baker; Ruth Alexandra Ross; Stuart H. Ralston
Accelerated osteoclastic bone resorption has a central role in the pathogenesis of osteoporosis and other bone diseases. Identifying the molecular pathways that regulate osteoclast activity provides a key to understanding the causes of these diseases and to the development of new treatments. Here we show that mice with inactivation of cannabinoid type 1 (CB1) receptors have increased bone mass and are protected from ovariectomy-induced bone loss. Pharmacological antagonists of CB1 and CB2 receptors prevented ovariectomy-induced bone loss in vivo and caused osteoclast inhibition in vitro by promoting osteoclast apoptosis and inhibiting production of several osteoclast survival factors. These studies show that the CB1 receptor has a role in the regulation of bone mass and ovariectomy-induced bone loss and that CB1- and CB2-selective cannabinoid receptor antagonists are a new class of osteoclast inhibitors that may be of value in the treatment of osteoporosis and other bone diseases.
Annals of Internal Medicine | 1990
Stuart H. Ralston; Stephen J. Gallacher; Uday Patel; James A. Campbell; Iain T. Boyle
STUDY OBJECTIVE To review the effects of antihypercalcemic treatment on morbidity and mortality in cancer-associated hypercalcemia. DESIGN Retrospective study of 126 consecutive patients with cancer-associated hypercalcemia. SETTING Inpatient referrals from a teaching hospital in the United Kingdom. INTERVENTION Medical antihypercalcemic therapy supplemented by specific anticancer therapy where possible. MEASUREMENTS AND MAIN RESULTS Median survival was 30 days. Survival did not differ in patients treated with different antihypercalcemic regimens but was longer (median, 135 days; P less than 0.001) in a subgroup of 26 patients for whom specific anticancer therapy was available. Polyuria and polydipsia improved after therapy in 83% of cases, central nervous system symptoms in 71%, constipation in 70%, nausea and vomiting in 56%, anorexia in 50%, and malaise and fatigue in 47% (all significant, P less than 0.001, pre-treatment compared with post-treatment). Pain control improved in only 23% of cases (not significant). Only 7% of patients with post-treatment serum calcium values above 3.50 mmol/L improved clinically compared with 80% whose calcium values fell below 2.80 mmol/L (P less than 0.001). Corresponding figures for the proportion of patients discharged from the hospital were 0% and 68% (P less than 0.001). CONCLUSIONS Life expectancy is poor in cancer-associated hypercalcemia even in patients who are actively treated. Antihypercalcemic therapy has an important palliative role, however, because symptoms are usually improved and, in many cases, patients may be made well enough to be discharged from the hospital during the terminal stages of their illness.
The Lancet | 2012
Eleftheria Zeggini; Kalliope Panoutsopoulou; Lorraine Southam; N W Rayner; Aaron G. Day-Williams; M C Lopes; Vesna Boraska; T. Esko; Evangelos Evangelou; A Hoffman; Jeanine J. Houwing-Duistermaat; Thorvaldur Ingvarsson; Ingileif Jonsdottir; H Jonnson; Hanneke J. M. Kerkhof; Margreet Kloppenburg; S.D. Bos; Massimo Mangino; Sarah Metrustry; P E Slagboom; Gudmar Thorleifsson; Raine Eva.; Madhushika Ratnayake; M Ricketts; Claude Beazley; Hannah Blackburn; Suzannah Bumpstead; K S Elliott; Sarah Hunt; Simon Potter
Summary Background Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. Methods We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11 009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42 938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. Findings We identified five genome-wide significant loci (binomial test p≤5·0×10−8) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08–1·16]; p=7·24×10−11), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight—a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Interpretation Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention. Funding arcOGEN was funded by a special purpose grant from Arthritis Research UK.
JAMA | 2008
Joyce B. J. van Meurs; Thomas A Trikalinos; Stuart H. Ralston; Susana Balcells; Maria Luisa Brandi; Kim Brixen; Douglas P. Kiel; Bente Langdahl; Paul Lips; Östen Ljunggren; R. Lorenc; Barbara Obermayer-Pietsch; Claes Ohlsson; Ulrika Pettersson; David M. Reid; François Rousseau; Serena Scollen; Wim Van Hul; Lídia Agueda; Kristina Åkesson; Lidia I. Benevolenskaya; Serge Livio Ferrari; Göran Hallmans; Albert Hofman; Lise Bjerre Husted; Marcin Kruk; Stephen Kaptoge; David Karasik; Magnus Karlsson; Mattias Lorentzon
CONTEXT Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population. OBJECTIVE To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk. DESIGN AND SETTING Prospective, multicenter, collaborative study of individual-level data on 37,534 individuals from 18 participating teams in Europe and North America. Data were collected between September 2004 and January 2007; analysis of the collected data was performed between February and May 2007. Bone mineral density was assessed by dual-energy x-ray absorptiometry. Fractures were identified via questionnaire, medical records, or radiographic documentation; incident fracture data were available for some cohorts, ascertained via routine surveillance methods, including radiographic examination for vertebral fractures. MAIN OUTCOME MEASURES Bone mineral density of the lumbar spine and femoral neck; prevalence of all fractures and vertebral fractures. RESULTS The Met667 allele of LRP5 was associated with reduced lumbar spine BMD (n = 25,052 [number of participants with available data]; 20-mg/cm2 lower BMD per Met667 allele copy; P = 3.3 x 10(-8)), as was the Val1330 allele (n = 24,812; 14-mg/cm2 lower BMD per Val1330 copy; P = 2.6 x 10(-9)). Similar effects were observed for femoral neck BMD, with a decrease of 11 mg/cm2 (P = 3.8 x 10(-5)) and 8 mg/cm2 (P = 5.0 x 10(-6)) for the Met667 and Val1330 alleles, respectively (n = 25 193). Findings were consistent across studies for both LRP5 alleles. Both alleles were associated with vertebral fractures (odds ratio [OR], 1.26; 95% confidence interval [CI], 1.08-1.47 for Met667 [2001 fractures among 20 488 individuals] and OR, 1.12; 95% CI, 1.01-1.24 for Val1330 [1988 fractures among 20,096 individuals]). Risk of all fractures was also increased with Met667 (OR, 1.14; 95% CI, 1.05-1.24 per allele [7876 fractures among 31,435 individuals)]) and Val1330 (OR, 1.06; 95% CI, 1.01-1.12 per allele [7802 fractures among 31 199 individuals]). Effects were similar when adjustments were made for age, weight, height, menopausal status, and use of hormone therapy. Fracture risks were partly attenuated by adjustment for BMD. Haplotype analysis indicated that Met667 and Val1330 variants both independently affected BMD. The LRP6 Ile1062Val polymorphism was not associated with any osteoporosis phenotype. All aforementioned associations except that between Val1330 and all fractures and vertebral fractures remained significant after multiple-comparison adjustments. CONCLUSIONS Common LRP5 variants are consistently associated with BMD and fracture risk across different white populations. The magnitude of the effect is modest. LRP5 may be the first gene to reach a genome-wide significance level (a conservative level of significance [herein, unadjusted P < 10(-7)] that accounts for the many possible comparisons in the human genome) for a phenotype related to osteoporosis.