Stuart J. Conway
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart J. Conway.
Journal of Cell Biology | 2004
Rui-rui Chen; Ignacio Valencia; Fei Zhong; Karen S. McColl; H. Llewelyn Roderick; Martin D. Bootman; Michael J. Berridge; Stuart J. Conway; Andrew B. Holmes; Gregory A. Mignery; Patricio Velez; Clark W. Distelhorst
Inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are channels responsible for calcium release from the endoplasmic reticulum (ER). We show that the anti-apoptotic protein Bcl-2 (either wild type or selectively localized to the ER) significantly inhibited InsP3-mediated calcium release and elevation of cytosolic calcium in WEHI7.2 T cells. This inhibition was due to an effect of Bcl-2 at the level of InsP3Rs because responses to both anti-CD3 antibody and a cell-permeant InsP3 ester were decreased. Bcl-2 inhibited the extent of calcium release from the ER of permeabilized WEHI7.2 cells, even at saturating concentrations of InsP3, without decreasing luminal calcium concentration. Furthermore, Bcl-2 reduced the open probability of purified InsP3Rs reconstituted into lipid bilayers. Bcl-2 and InsP3Rs were detected together in macromolecular complexes by coimmunoprecipitation and blue native gel electrophoresis. We suggest that this functional interaction of Bcl-2 with InsP3Rs inhibits InsP3R activation and thereby regulates InsP3-induced calcium release from the ER.
Cell Calcium | 2003
Claire M. Peppiatt; Tony J. Collins; Lauren Mackenzie; Stuart J. Conway; Andrew B. Holmes; Martin D. Bootman; Michael J. Berridge; Jt Seo; H. Llewelyn Roderick
The action of 2-aminoethoxydiphenyl borate (2-APB) on Ca(2+) signalling in HeLa cells and cardiac myocytes was investigated. Consistent with other studies, we found that superfusion of cells with 2-APB rapidly inhibited inositol 1,4,5-trisphosphate (InsP(3))-mediated Ca(2+) release and store-operated Ca(2+) entry (SOC). In addition to abrogating hormone-evoked Ca(2+) responses, 2-APB could antagonise Ca(2+) signals evoked by a membrane permeant InsP(3) ester. 2-APB also slowed the recovery of intracellular Ca(2+) signals consistent with an effect on Ca(2+) ATPases. The inhibitory action of 2-APB on InsP(3) receptors (InsP(3)Rs), SOC channels and Ca(2+) pumps persisted for several minutes after washout of the compound. Application of 2-APB to unstimulated cells had no effect on subsequent Ca(2+) responses suggesting that it has a use-dependent action. Mitochondria in cells treated with 2-APB showed a rapid and slowly reversible swelling. 2-APB did not cause the mitochondria to depolarise, but it reduced the extent of mitochondrial calcium uptake. Although 2-APB has been demonstrated not to affect voltage-operated Ca(2+) channels or ryanodine receptors, we found that it gave a concentration-dependent long-lasting inhibition of Ca(2+) signalling in electrically-stimulated cardiac myocytes, where InsP(3)Rs and SOC channels do not play a significant role. Our data suggest that 2-APB has multiple cellular targets, a use-dependent action, is difficult to reverse and may affect Ca(2+) signalling in cell types where InsP(3) and SOC are not active.
Journal of Medicinal Chemistry | 2011
David S. Hewings; Minghua Wang; Martin Philpott; Oleg Fedorov; Sagar Uttarkar; Panagis Filippakopoulos; Sarah Picaud; Chaitanya Vuppusetty; Brian D. Marsden; Stefan Knapp; Stuart J. Conway; Tom D. Heightman
Histone–lysine acetylation is a vital chromatin post-translational modification involved in the epigenetic regulation of gene transcription. Bromodomains bind acetylated lysines, acting as readers of the histone-acetylation code. Competitive inhibitors of this interaction have antiproliferative and anti-inflammatory properties. With 57 distinct bromodomains known, the discovery of subtype-selective inhibitors of the histone–bromodomain interaction is of great importance. We have identified the 3,5-dimethylisoxazole moiety as a novel acetyl-lysine bioisostere, which displaces acetylated histone-mimicking peptides from bromodomains. Using X-ray crystallographic analysis, we have determined the interactions responsible for the activity and selectivity of 4-substituted 3,5-dimethylisoxazoles against a selection of phylogenetically diverse bromodomains. By exploiting these interactions, we have developed compound 4d, which has IC50 values of <5 μM for the bromodomain-containing proteins BRD2(1) and BRD4(1). These compounds are promising leads for the further development of selective probes for the bromodomain and extra C-terminal domain (BET) family and CREBBP bromodomains.
The EMBO Journal | 2004
Nael Nadif Kasri; Anthony M. Holmes; Geert Bultynck; Jan B. Parys; Martin D. Bootman; Katja Rietdorf; Ludwig Missiaen; Fraser McDonald; Humbert De Smedt; Stuart J. Conway; Andrew B. Holmes; Michael J. Berridge; H. Llewelyn Roderick
Inositol 1,4,5‐trisphosphate receptors (InsP3Rs) were recently demonstrated to be activated independently of InsP3 by a family of calmodulin (CaM)‐like neuronal Ca2+‐binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP3Rs, and their functional effects on InsP3R‐evoked Ca2+ signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and 45Ca2+ flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP3‐induced Ca2+ release (IICR). In addition, we found a Ca2+‐independent interaction between CaBP1 and the NH2‐terminal 159 amino acids of the type 1 InsP3R. This interaction resulted in decreased InsP3 binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP3Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP3Rs tuning the sensitivity of cells to InsP3.
Journal of the American Chemical Society | 2014
Duncan A. Hay; Oleg Fedorov; Sarah Martin; Dean C. Singleton; Cynthia Tallant; Christopher Wells; Sarah Picaud; Martin Philpott; Octovia P. Monteiro; Catherine Rogers; Stuart J. Conway; Timothy P. C. Rooney; Anthony Tumber; Clarence Yapp; Panagis Filippakopoulos; Mark Edward Bunnage; Susanne Müller; Stefan Knapp; Christopher J. Schofield; Paul E. Brennan
Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.
Journal of Cell Science | 2004
Lauren Mackenzie; H. Llewelyn Roderick; Michael J. Berridge; Stuart J. Conway; Martin D. Bootman
We examined the regulation of calcium signalling in atrial cardiomyocytes during excitation-contraction coupling, and how changes in the distribution of calcium impacts on contractility. Under control conditions, calcium transients originated in subsarcolemmal locations and showed local regeneration through activation of calcium-induced calcium release from ryanodine receptors. Despite functional ryanodine receptors being expressed at regular (∼2 μm) intervals throughout atrial myocytes, the subsarcolemmal calcium signal did not spread in a fully regenerative manner through the interior of a cell. Rather, there was a diminishing centripetal propagation of calcium. The lack of regeneration was due to mitochondria and SERCA pumps preventing the inward movement of calcium. Inhibiting these calcium buffering mechanisms allowed the globalisation of action potential-evoked responses. In addition, physiological positive inotropic agents, such as endothelin-1 and β-adrenergic agonists, as well as enhanced calcium current, calcium store loading and inositol 1,4,5-trisphosphate infusion also led to regenerative global responses. The consequence of globalising calcium signals was a significant increase in cellular contraction. These data indicate how calcium signals and their consequences are determined by the interplay of multiple subcellular calcium management systems.
Journal of Cell Science | 2006
Andrew Proven; H. Llewelyn Roderick; Stuart J. Conway; Michael J. Berridge; Jeffrey K. Horton; Stephen J. Capper; Martin D. Bootman
Although ventricular cardiomyocytes express inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors, it is unclear how these Ca2+ channels contribute to the effects of Gq-coupled agonists. Endothelin-1 augmented the amplitude of pacing-evoked Ca2+ signals (positive inotropy), and caused an increasing frequency of spontaneous diastolic Ca2+-release transients. Both effects of endothelin-1 were blocked by an antagonist of phospholipase C, suggesting that Ins(1,4,5)P3 and/or diacylglycerol production was necessary. The endothelin-1-mediated spontaneous Ca2+ transients were abolished by application of 2-aminoethoxydiphenyl borate (2-APB), an antagonist of Ins(1,4,5)P3 receptors. Incubation of electrically-paced ventricular myocytes with a membrane-permeant Ins(1,4,5)P3 ester provoked the occurrence of spontaneous diastolic Ca2+ transients with the same characteristics and sensitivity to 2-APB as the events stimulated by endothelin-1. In addition to evoking spontaneous Ca2+ transients, stimulation of ventricular myocytes with the Ins(1,4,5)P3 ester caused a positive inotropic effect. The effects of endothelin-1 were compared with two other stimuli, isoproterenol and digoxin, which are known to induce inotropy and spontaneous Ca2+ transients by overloading intracellular Ca2+ stores. The events evoked by isoproterenol and digoxin were dissimilar from those triggered by endothelin-1 in several ways. We propose that Ins(1,4,5)P3 receptors support the development of both inotropy and spontaneous pro-arrhythmic Ca2+ signals in ventricular myocytes stimulated with a Gq-coupled agonist.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Dagmar Harzheim; Mehregan Movassagh; Roger Foo; Oliver Ritter; Aslam Tashfeen; Stuart J. Conway; Martin D. Bootman; H. Llewelyn Roderick
Cardiac hypertrophy is a growth response of the heart to increased hemodynamic demand or damage. Accompanying this heart enlargement is a remodeling of Ca2+ signaling. Due to its fundamental role in controlling cardiomyocyte contraction during every heartbeat, modifications in Ca2+ fluxes significantly impact on cardiac output and facilitate the development of arrhythmias. Using cardiomyocytes from spontaneously hypertensive rats (SHRs), we demonstrate that an increase in Ca2+ release through inositol 1,4,5-trisphosphate receptors (InsP3Rs) contributes to the larger excitation contraction coupling (ECC)-mediated Ca2+ transients characteristic of hypertrophic myocytes and underlies the more potent enhancement of ECC-mediated Ca2+ transients and contraction elicited by InsP3 or endothelin-1 (ET-1). Responsible for this is an increase in InsP3R expression in the junctional sarcoplasmic reticulum. Due to their close proximity to ryanodine receptors (RyRs) in this region, enhanced Ca2+ release through InsP3Rs served to sensitize RyRs, thereby increasing diastolic Ca2+ levels, the incidence of extra-systolic Ca2+ transients, and the induction of ECC-mediated Ca2+ elevations. Unlike the increase in InsP3R expression and Ca2+ transient amplitude in the cytosol, InsP3R expression and ECC-mediated Ca2+ transients in the nucleus were not altered during hypertrophy. Elevated InsP3R2 expression was also detected in hearts from human patients with heart failure after ischemic dilated cardiomyopathy, as well as in aortic-banded hypertrophic mouse hearts. Our data establish that increased InsP3R expression is a general mechanism that underlies remodeling of Ca2+ signaling during heart disease, and in particular, in triggering ventricular arrhythmia during hypertrophy.
Journal of Medicinal Chemistry | 2013
David S. Hewings; Oleg Fedorov; Panagis Filippakopoulos; Sarah Martin; Sarah Picaud; Anthony Tumber; Christopher Wells; Monica M. Olcina; Katherine Freeman; Andrew Gill; Alison J. Ritchie; David W. Sheppard; Angela J. Russell; Ester M. Hammond; Stefan Knapp; Paul E. Brennan; Stuart J. Conway
The bromodomain protein module, which binds to acetylated lysine, is emerging as an important epigenetic therapeutic target. We report the structure-guided optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET (bromodomain and extra terminal domain) bromodomain family with good ligand efficiency. X-ray crystal structures of the most potent compounds reveal key interactions required for high affinity at BRD4(1). Cellular studies demonstrate that the phenol and acetate derivatives of the lead compounds showed strong antiproliferative effects on MV4;11 acute myeloid leukemia cells, as shown for other BET bromodomain inhibitors and genetic BRD4 knockdown, whereas the reported compounds showed no general cytotoxicity in other cancer cell lines tested.
Angewandte Chemie | 2014
Timothy P. C. Rooney; Panagis Filippakopoulos; Oleg Fedorov; Sarah Picaud; Wilian A. Cortopassi; Duncan A. Hay; Sarah Martin; Anthony Tumber; Catherine Rogers; Martin Philpott; Minghua Wang; Amber L. Thompson; Tom D. Heightman; David C. Pryde; Andrew Simon Cook; Robert S. Paton; Susanne Müller; Stefan Knapp; Paul E. Brennan; Stuart J. Conway
The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation–π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells.