Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart J. D. Neil is active.

Publication


Featured researches published by Stuart J. D. Neil.


Nature | 2008

Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

Stuart J. D. Neil; Trinity Zang; Paul D. Bieniasz

Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-α, and it consists of protein-based tethers, which we term ‘tetherins’, that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin’s antiviral activity is a potential therapeutic strategy in HIV/AIDS.


Journal of Virology | 2009

Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin

Nolwenn Jouvenet; Stuart J. D. Neil; Maria Zhadina; Trinity Zang; Zerina Kratovac; Youngnam Lee; Matthew W. McNatt; Theodora Hatziioannou; Paul D. Bieniasz

ABSTRACT The expression of many putative antiviral genes is upregulated when cells encounter type I interferon (IFN), but the actual mechanisms by which many IFN-induced gene products inhibit virus replication are poorly understood. A recently identified IFN-induced antiretroviral protein, termed tetherin (previously known as BST-2 or CD317), blocks the release of nascent human immunodeficiency virus type 1 (HIV-1) particles from infected cells, and an HIV-1 accessory protein, Vpu, acts as a viral antagonist of tetherin. Here, we show that tetherin is capable of blocking not only the release of HIV-1 particles but also the release of particles assembled using the major structural proteins of a variety of prototype retroviruses, including members of the alpharetrovirus, betaretrovirus, deltaretrovirus, lentivirus, and spumaretrovirus families. Moreover, we show that the release of particles assembled using filovirus matrix proteins from Marburg virus and Ebola virus is also sensitive to inhibition by tetherin. These findings indicate that tetherin is a broadly specific inhibitor of enveloped particle release, and therefore, inhibition is unlikely to require specific interactions with viral proteins. Nonetheless, tetherin colocalized with nascent virus-like particles generated by several retroviral and filoviral structural proteins, indicating that it is present at, or recruited to, sites of particle assembly. Overall, tetherin is potentially active against many enveloped viruses and likely to be an important component of the antiviral innate immune defense.


PLOS Biology | 2006

Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly

Nolwenn Jouvenet; Stuart J. D. Neil; Cameron Bess; Marc C. Johnson; Cesar A. Virgen; Sanford M. Simon; Paul D. Bieniasz

Recently proposed models that have gained wide acceptance posit that HIV-1 virion morphogenesis is initiated by targeting the major structural protein (Gag) to late endosomal membranes. Thereafter, late endosome-based secretory pathways are thought to deliver Gag or assembled virions to the plasma membrane (PM) and extracellular milieu. We present several findings that are inconsistent with this model. Specifically, we demonstrate that HIV-1 Gag is delivered to the PM, and virions are efficiently released into the extracellular medium, when late endosome motility is abolished. Furthermore, we show that HIV-1 virions are efficiently released when assembly is rationally targeted to the PM, but not when targeted to late endosomes. Recently synthesized Gag first accumulates and assembles at the PM, but a proportion is subsequently internalized via endocytosis or phagocytosis, thus accounting for observations of endosomal localization. We conclude that HIV-1 assembly is initiated and completed at the PM, and not at endosomal membranes.


PLOS Pathogens | 2009

Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

Matthew W. McNatt; Trinity Zang; Theodora Hatziioannou; Mackenzie Bartlett; Ismael Farouck Fofana; Welkin E. Johnson; Stuart J. D. Neil; Paul D. Bieniasz

Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.


PLOS Pathogens | 2006

HIV-1 Vpu Promotes Release and Prevents Endocytosis of Nascent Retrovirus Particles from the Plasma Membrane

Stuart J. D. Neil; Scott W. Eastman; Nolwenn Jouvenet; Paul D. Bieniasz

The human immunodeficiency virus (HIV) type-1 viral protein U (Vpu) protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV) Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP) were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.


Journal of Virology | 2009

Antagonism to and Intracellular Sequestration of Human Tetherin by the Human Immunodeficiency Virus Type 2 Envelope Glycoprotein

Anna Le Tortorec; Stuart J. D. Neil

ABSTRACT Tetherin (CD317/BST-2), an interferon-induced membrane protein, restricts the release of nascent retroviral particles from infected cell surfaces. While human immunodeficiency virus type 1 (HIV-1) encodes the accessory gene vpu to overcome the action of tetherin, the lineage of primate lentiviruses that gave rise to HIV-2 does not. It has been previously reported that the HIV-2 envelope glycoprotein has a Vpu-like function in promoting virus release. Here we demonstrate that the HIV-2 Rod envelope glycoprotein (HIV-2 Rod Env) is a tetherin antagonist. Expression of HIV-2 Rod Env, but not that of HIV-1 or the closely related simian immunodeficiency virus (SIV) SIVmac1A11, counteracts tetherin-mediated restriction of Vpu-defective HIV-1 in a cell-type-specific manner. This correlates with the ability of the HIV-2 Rod Env to mediate cell surface downregulation of tetherin. Antagonism requires an endocytic motif conserved across HIV/SIV lineages in the gp41 cytoplasmic tail, but specificity for tetherin is governed by extracellular determinants in the mature Env protein. Coimmunoprecipitation studies suggest an interaction between HIV-2 Rod Env and tetherin, but unlike studies with Vpu, we found no evidence of tetherin degradation. In the presence of HIV-2 Rod Env, tetherin localization is restricted to the trans-Golgi network, suggesting Env-mediated effects on tetherin trafficking sequester it from virus assembly sites on the plasma membrane. Finally, we recapitulated these observations in HIV-2-infected CD4+ T-cell lines, demonstrating that tetherin antagonism and sequestration occur at physiological levels of Env expression during virus replication.


Cell Host & Microbe | 2012

Innate Sensing of HIV-1 Assembly by Tetherin Induces NFκB-Dependent Proinflammatory Responses

Rui Pedro Galão; Anna Le Tortorec; Suzy Pickering; Tonya Kueck; Stuart J. D. Neil

Summary Antiviral proteins that recognize pathogen-specific or aberrantly located molecular motifs are perfectly positioned to act as pattern-recognition receptors and signal to the immune system. Here we investigated whether the interferon-induced viral restriction factor tetherin (CD317/BST2), which is known to inhibit HIV-1 particle release by physically tethering virions to the cell surface, has such a signaling role. We find that upon restriction of Vpu-defective HIV-1, tetherin acts as a virus sensor to induce NFκB-dependent proinflammatory gene expression. Signaling requires both tetherin’s extracellular domain involved in virion retention and determinants in the cytoplasmic tail, including an endocytic motif, although signaling is independent of virion endocytosis. Furthermore, recruitment of the TNF-receptor-associated factor TRAF6 and activation of the mitogen-activated protein kinase TAK1 are critical for signaling. Human tetherin’s ability to mediate efficient signaling may have arisen as a result of a five amino acid deletion that occurred in hominids after their divergence from chimpanzees.


Cell Host & Microbe | 2008

Duffy Antigen Receptor for Chemokines Mediates trans-Infection of HIV-1 from Red Blood Cells to Target Cells and Affects HIV-AIDS Susceptibility

Weijing He; Stuart J. D. Neil; Hemant Kulkarni; Edward Wright; Brian K. Agan; Vincent C. Marconi; Matthew J. Dolan; Robin A. Weiss; Sunil K. Ahuja

Duffy antigen receptor for chemokines (DARC) expressed on red blood cells (RBCs) influences plasma levels of HIV-1-suppressive and proinflammatory chemokines such as CCL5/RANTES. DARC is also the RBC receptor for Plasmodium vivax. Africans with DARC -46C/C genotype, which confers a DARC-negative phenotype, are resistant to vivax malaria. Here, we show that HIV-1 attaches to RBCs via DARC, effecting trans-infection of target cells. In African Americans, DARC -46C/C is associated with 40% increase in the odds of acquiring HIV-1. If extrapolated to Africans, approximately 11% of the HIV-1 burden in Africa may be linked to this genotype. After infection occurs, however, DARC-negative RBC status is associated with slower disease progression. Furthermore, the disease-accelerating effect of a previously described CCL5 polymorphism is evident only in DARC-expressing and not in DARC-negative HIV-infected individuals. Thus, DARC influences HIV/AIDS susceptibility by mediating trans-infection of HIV-1 and by affecting both chemokine-HIV interactions and chemokine-driven inflammation.


Nature Reviews Microbiology | 2011

Host factors involved in retroviral budding and release

Juan Martin-Serrano; Stuart J. D. Neil

The plasma membrane is the final barrier that enveloped viruses must cross during their egress from the infected cell. Here, we review recent insights into the cell biology of retroviral assembly and release; these insights have driven a new understanding of the host proteins, such as the ESCRT machinery, that are used by retroviruses to promote their final separation from the host cell. We also review antiviral host factors such as tetherin, which can directly inhibit the release of retroviral particles. These studies have illuminated the role of the lipid bilayer as the unexpected target for virus restriction by the innate immune response.


Journal of Virology | 2010

Cell-Cell Spread of Human Immunodeficiency Virus Type 1 Overcomes Tetherin/BST-2-Mediated Restriction in T cells

Clare Jolly; Nicola J. Booth; Stuart J. D. Neil

ABSTRACT Direct cell-to-cell spread of human immunodeficiency virus type 1 (HIV-1) between T cells at the virological synapse (VS) is an efficient mechanism of viral dissemination. Tetherin (BST-2/CD317) is an interferon-induced, antiretroviral restriction factor that inhibits nascent cell-free particle release. The HIV-1 Vpu protein antagonizes tetherin activity; however, whether tetherin also restricts cell-cell spread is unclear. We performed quantitative cell-to-cell transfer analysis of wild-type (WT) or Vpu-defective HIV-1 in Jurkat and primary CD4+ T cells, both of which express endogenous levels of tetherin. We found that Vpu-defective HIV-1 appeared to disseminate more efficiently by cell-to-cell contact between Jurkat cells under conditions where tetherin restricted cell-free virion release. In T cells infected with Vpu-defective HIV-1, tetherin was enriched at the VS, and VS formation was increased compared to the WT, correlating with an accumulation of virus envelope proteins on the cell surface. Increasing tetherin expression with type I interferon had only minor effects on cell-to-cell transmission. Furthermore, small interfering RNA (siRNA)-mediated depletion of tetherin decreased VS formation and cell-to-cell transmission of both Vpu-defective and WT HIV-1. Taken together, these data demonstrate that tetherin does not restrict VS-mediated T cell-to-T cell transfer of Vpu-defective HIV-1 and suggest that under some circumstances tetherin might promote cell-to-cell transfer, either by mediating the accumulation of virions on the cell surface or by regulating integrity of the VS. If so, inhibition of tetherin activity by Vpu may balance requirements for efficient cell-free virion production and cell-to-cell transfer of HIV-1 in the face of antiviral immune responses.

Collaboration


Dive into the Stuart J. D. Neil's collaboration.

Top Co-Authors

Avatar

Paul D. Bieniasz

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Robin A. Weiss

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Áine McKnight

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Collins

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge