Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart K. Williams is active.

Publication


Featured researches published by Stuart K. Williams.


Physics in Medicine and Biology | 2008

An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets

Garret T. Bonnema; Kristen O. Cardinal; Stuart K. Williams; Jennifer K. Barton

Recent research has suggested that endothelialization of vascular stents is crucial to reducing the risk of late stent thrombosis. With a resolution of approximately 10 microm, optical coherence tomography (OCT) may be an appropriate imaging modality for visualizing the vascular response to a stent and measuring the percentage of struts covered with an anti-thrombogenic cellular lining. We developed an image analysis program to locate covered and uncovered stent struts in OCT images of tissue-engineered blood vessels. The struts were found by exploiting the highly reflective and shadowing characteristics of the metallic stent material. Coverage was evaluated by comparing the luminal surface with the depth of the strut reflection. Strut coverage calculations were compared to manual assessment of OCT images and epi-fluorescence analysis of the stented grafts. Based on the manual assessment, the strut identification algorithm operated with a sensitivity of 93% and a specificity of 99%. The strut coverage algorithm was 81% sensitive and 96% specific. The present study indicates that the program can automatically determine percent cellular coverage from volumetric OCT datasets of blood vessel mimics. The program could potentially be extended to assessments of stent endothelialization in native stented arteries.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Determinants of Microvascular Network Topologies in Implanted Neovasculatures

Carlos C. Chang; Laxminarayanan Krishnan; Sara S. Nunes; Kenneth H. Church; Lowell T. Edgar; Eugene D. Boland; Jeffery A. Weiss; Stuart K. Williams; James B. Hoying

Objective— During neovascularization, the end result is a new functional microcirculation composed of a network of mature microvessels with specific topologies. Although much is known concerning the mechanisms underlying the initiation of angiogenesis, it remains unclear how the final architecture of microcirculatory beds is regulated. To begin to address this, we determined the impact of angiogenic neovessel prepatterning on the final microvascular network topology using a model of implant neovascularization. Methods and Results— We used 3D direct-write bioprinting or physical constraints in a manner permitting postangiogenesis vascular remodeling and adaptation to pattern angiogenic microvascular precursors (neovessels formed from isolated microvessel segments) in 3D collagen gels before implantation and subsequent network formation. Neovasculatures prepatterned into parallel arrays formed functional networks after 4 weeks postimplantation but lost the prepatterned architecture. However, maintenance of uniaxial physical constraints during postangiogenesis remodeling of the implanted neovasculatures produced networks with aligned microvessels, as well as an altered proportional distribution of arterioles, capillaries, and venules. Conclusion— Here we show that network topology resulting from implanted microvessel precursors is independent from prepatterning of precursors but can be influenced by a patterning stimulus involving tissue deformation during postangiogenesis remodeling and maturation.


Stem Cells Translational Medicine | 2013

Adipose-Derived Cell Construct Stabilizes Heart Function and Increases Microvascular Perfusion in an Established Infarct

Amanda J. LeBlanc; Quang T. Nguyen; Jeremy S. Touroo; Allison L. Aird; Raymond C. Chang; Chin K. Ng; James B. Hoying; Stuart K. Williams

We have previously shown that myocardial infarction (MI) immediately treated with an epicardial construct containing stromal vascular fraction (SVF) from adipose tissue preserved microvascular function and left ventricle contractile mechanisms. In order to evaluate a more clinically relevant condition, we investigated the cardiac recovery potential of an SVF construct implanted onto an established infarct. SVF cells were isolated from rat adipose tissue, plated on Vicryl, and cultured for 14 days. Fischer‐344 rats were separated into MI groups: (a) 6‐week MI (MI), (b) 6‐week MI treated with an SVF construct at 2 weeks (MI SVF), (c) 6‐week MI with Vicryl construct at 2 weeks (MI Vicryl), and (d) MI 2wk (time point of intervention). Emax, an indicator of systolic performance and contractile function, was lower in the MI and MI Vicryl versus MI SVF. Positron emission tomography imaging (18F‐fluorodeoxyglucose) revealed a decreased percentage of relative infarct volume in the MI SVF versus MI and MI Vicryl. Total vessel count and percentage of perfusion assessed via immunohistochemistry were both increased in the infarct region of MI SVF versus MI and MI Vicryl. Overall cardiac function, percentage of relative infarct, and percentage of perfusion were similar between MI SVF and MI 2wk; however, total vessel count increased after SVF treatment. These data suggest that SVF treatment of an established infarct stabilizes the heart at the time point of intervention by preventing a worsening of cardiac performance and infarcted volume, and is associated with increased microvessel perfusion in the area of established infarct.


Microcirculation | 2012

Microvascular Repair: Post-Angiogenesis Vascular Dynamics

Amanda J. LeBlanc; Laxminarayanan Krishnan; Christopher J. Sullivan; Stuart K. Williams; James B. Hoying

Please cite this paper as: LeBlanc AJ, Krishnan L, Sullivan CJ, Williams SK, Hoying JB. Microvascular repair: post‐angiogenesis vascular dynamics. Microcirculation19: 676–695, 2012.


Transplantation direct | 2016

Identifying Effective Enzyme Activity Targets for Recombinant Class I and Class II Collagenase for Successful Human Islet Isolation.

A. N. Balamurugan; Michael L. Green; Andrew G. Breite; Gopalakrishnan Loganathan; Joshua J. Wilhelm; Benjamin Tweed; Lenka Vargova; Amber Lockridge; Manikya Kuriti; Michael G. Hughes; Stuart K. Williams; Bernhard J. Hering; Francis E. Dwulet; Robert C. McCarthy

Background Isolation following a good manufacturing practice-compliant, human islet product requires development of a robust islet isolation procedure where effective limits of key reagents are known. The enzymes used for islet isolation are critical but little is known about the doses of class I and class II collagenase required for successful islet isolation. Methods We used a factorial approach to evaluate the effect of high and low target activities of recombinant class I (rC1) and class II (rC2) collagenase on human islet yield. Consequently, 4 different enzyme formulations with divergent C1:C2 collagenase mass ratios were assessed, each supplemented with the same dose of neutral protease. Both split pancreas and whole pancreas models were used to test enzyme targets (n = 20). Islet yield/g pancreas was compared with historical enzymes (n = 42). Results Varying the Wunsch (rC2) and collagen degradation activity (CDA, rC1) target dose, and consequently the C1:C2 mass ratio, had no significant effect on tissue digestion. Digestions using higher doses of Wunsch and CDA resulted in comparable islet yields to those obtained with 60% and 50% of those activities, respectively. Factorial analysis revealed no significant main effect of Wunsch activity or CDA for any parameter measured. Aggregate results from 4 different collagenase formulations gave 44% higher islet yield (>5000 islet equivalents/g) in the body/tail of the pancreas (n = 12) when compared with those from the same segment using a standard natural collagenase/protease mixture (n = 6). Additionally, islet yields greater than 5000 islet equivalents/g pancreas were also obtained in whole human pancreas. Conclusions A broader C1:C2 ratio can be used for human islet isolation than has been used in the past. Recombinant collagenase is an effective replacement for the natural enzyme and we have determined that high islet yield can be obtained even with low doses of rC1:rC2, which is beneficial for the survival of islets.


Experimental Gerontology | 2015

Adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capacity to support the formation of microvascular networks

Allison L. Aird; Christopher Nevitt; Katelyn Christian; Stuart K. Williams; James B. Hoying; Amanda J. LeBlanc

UNLABELLEDnAdipose-derived regenerative and stem cells, defined collectively as the stromal vascular fraction (SVF), support the formation of neovascular networks at the site of implantation. The effect of advancing age on SVF cell population effectiveness towards stimulated neovascularization was evaluated.nnnMETHODSnSVF was enzymatically isolated from adipose of young (ySVF, 4 months) or old (oSVF, 24 months) Fisher-344 rats, combined with type I collagen and polymerized. Encapsulated SVF was implanted subcutaneously into young Rag1 mice for two or four weeks. Angiogenic function of age-dependent SVF was also extensively evaluated in vitro using standard assays.nnnRESULTSnIn vitro studies indicated no difference in angiogenic function between ySVF and oSVF (viability, proliferation, migration, and tube-formation). At two weeks post-implantation, there was no age-related difference in percent apoptosis in explanted constructs. By four weeks post-implantation, oSVF implants displayed 36% less total vessels/mm(2), 43% less perfused vessels/mm(2), and exhibited greater percent apoptosis compared to ySVF (n ≥ 12). Blocking thrombospondin-1 (Thbs-1), a protein found to be highly expressed in oSVF but not ySVF, increased the percent of perfused vascular volume and vessel diameters in oSVF constructs after two weeks compared to oSVF implants treated with control antibody.nnnCONCLUSIONSnAdvancing donor age reduces the potential of adipose-derived SVF to derive a mature microcirculation, but does not hinder initial angiogenesis. However, modulation of Thbs-1 may improve this outcome. This data suggests that greater pruning, dysfunctional structural adaptation and/or poor maturation with initiation of blood flow may occur in oSVF.


Journal of Biophotonics | 2009

A Concentric Three Element Radial Scanning Optical Coherence Tomography Endoscope

Garret T. Bonnema; Kristen O. Cardinal; Stuart K. Williams; Jennifer K. Barton

We have developed a 2.1 mm outer diameter optical coherence tomography endoscope that provides radial scans of luminal structures. The endoscope consists of three elements: (1) a stationary central core containing the fibers and focusing elements, (2) a rotating intermediate tube with a distal rod prism, and (3) a stationary sterilized glass cover. This design enables radial and spiral scanning and allows adjustment of the axial focal distance. Additionally, this design is capable of focusing light from multiple fibers into tissue. The performance of the endoscope was demonstrated in a study of tissue engineered blood vessels imaged at various time points during development.


Stem Cells Translational Medicine | 2015

Systemically Delivered Adipose Stromal Vascular Fraction Cells Disseminate to Peripheral Artery Walls and Reduce Vasomotor Tone Through a CD11b+ Cell-Dependent Mechanism

Marvin E. Morris; Jason E. Beare; Robert Reed; Jacob R. Dale; Amanda J. LeBlanc; Christina L. Kaufman; Huaiyu Zheng; Chin K. Ng; Stuart K. Williams; James B. Hoying

Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure‐dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b+ cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b+ cell being the relevant cell type, SVF‐derived F4/80‐positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b+ cell‐dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide‐dependent mechanism that required CD11b+ cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement.


Cell Transplantation | 2015

Concentration-Dependent Vascularization of Adipose Stromal Vascular Fraction Cells.

John G. Maijub; Nolan L. Boyd; Jacob R. Dale; James B. Hoying; Marvin E. Morris; Stuart K. Williams

Adipose-derived stromal vascular fraction (SVF) cells have been shown to self-associate to form vascular structures under both in vitro and in vivo conditions. The angiogenic (new vessels from existing vessels) and vasculogenic (new vessels through self-assembly) potential of the SVF cell population may provide a cell source for directly treating (i.e., point of care without further cell isolation) ischemic tissues. However the correct dosage of adipose SVF cells required to achieve a functional vasculature has not been established. Accordingly, in vitro and in vivo dose response assays were performed evaluating the SVF cell vasculogenic potential. Serial dilutions of freshly isolated rat adipose SVF cells were plated on growth factor reduced Matrigel and vasculogenesis, assessed as cellular tube-like network assembly, was quantified after 3 days of culture. This in vitro vasculogenesis assay indicated that rat SVF cells reached maximum network length at a concentration of 2.5 × 105 cells/ml and network maintained at the higher concentrations tested. The same concentrations of rat and human SVF cells were used to evaluate vasculogenesis in vivo. SVF cells were incorporated into collagen gels and subcutaneously implanted into Rag1 immunodeficient mice. The 3D confocal images of harvested constructs were evaluated to quantify dose dependency of SVF cell vasculogenesis potential. Rat- and human-derived SVF cells yielded a maximum vasculogenic potential at 1 × 106 and 4 × 106 cells/ml, respectively. No adverse reactions (e.g., toxicity, necrosis, tumor formation) were observed at any concentration tested. In conclusion, the vasculogenic potential of adipose-derived SVF cell populations is dose dependent.


Journal of Biomedical Materials Research Part A | 2014

Vascularization and cellular isolation potential of a novel electrospun cell delivery vehicle

Laxminarayanan Krishnan; Jeremy S. Touroo; Robert Reed; Eugene D. Boland; James B. Hoying; Stuart K. Williams

A clinical need exists for a cell delivery device that supports long-term cell viability, cell retention within the device and retrieval of delivered cells if necessary. Previously, cell isolation devices have been based on hollow fiber membranes, porous polymer scaffolds, alginate systems, or micro-machined membranes. We present the development and characterization of a novel dual porosity electrospun membrane based device, which supports cellular infiltration and vascularization of its outer porous layer and maintains cellular isolation within a lumen bounded by an inner low porosity layer. Electrospinning conditions were initially established to support electrospun fiber deposition onto nonconductive silicone surfaces. With these parameters established, devices for in vivo evaluations were produced using nylon as a nonconductive scaffold for deposition of dual porosity electrospun fibers. The outer porous layer supported the development of a penetrating microcirculation and the membrane supported the transfer of insulin from encapsulated sustained release pellets for 4 weeks. Viable cells implanted within the device could be identified after 2 weeks of implantation. Through the successful demonstration of survival and cellular isolation of human epithelial cells within the implanted devices and the ability to use the device to deliver insulin, we have established the utility of this device toward localized cell transplantation. The cell delivery device establishes a platform to test the feasibility of approaches to cell dose control and cell localization at the site of implantation in the clinical use of modified autologous or allogeneic cells.

Collaboration


Dive into the Stuart K. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene D. Boland

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge