Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart L. Johnson is active.

Publication


Featured researches published by Stuart L. Johnson.


The Journal of Physiology | 2003

Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells

Walter Marcotti; Stuart L. Johnson; Matthew C. Holley; Corné J. Kros

Developmental changes in electrophysiological membrane properties of mouse cochlear inner hair cells (IHCs) were studied from just after terminal differentiation up to functional maturity. As early as embryonic day 14.5 (E14.5) newly differentiated IHCs express a very small outward K+ current that is largely insensitive to 4‐aminopyridine (4‐AP). One day later the inward rectifier, IK1, is first observed. These immature cells initially exhibit only slow graded voltage responses under current clamp. From E17.5 spontaneous action potentials occur. During the first week of postnatal development, the outward K+ current steadily increases in size and a progressively larger fraction of the current is sensitive to 4‐AP. During the second postnatal week, the activation of the 4‐AP‐sensitive current, by now contributing about half of the outward K+ current, shifts in the hyperpolarizing direction. Together with an increase in size of IK1, this hyperpolarizes the cell, thus inhibiting the spontaneous spike activity, although spikes could still be evoked upon depolarizing current injection. Starting at about the onset of hearing (postnatal day 12, P12) immature IHCs make the final steps towards fully functional sensory receptors with fast graded voltage responses. This is achieved mainly by the expression of the large‐conductance Ca2+‐activated K+ current IK,f, but also of a current indistinguishable from the negatively activating IK,n previously described in mature outer hair cells (OHCs). The 4‐AP‐sensitive current continues to increase after the onset of hearing to form the major part of the mature delayed rectifier, IK,s. By P20 IHCs appear mature in terms of their complement of K+ conductances.


Nature | 2012

Restoration of auditory evoked responses by human ES-cell-derived otic progenitors

Wei-Wei Chen; Nopporn Jongkamonwiwat; Leila Abbas; Sarah Jacob Eshtan; Stuart L. Johnson; Stephanie Kuhn; Marta Milo; Johanna K. Thurlow; Peter W. Andrews; Walter Marcotti; Harry Moore; Marcelo N. Rivolta

Deafness is a condition with a high prevalence worldwide, produced primarily by the loss of the sensory hair cells and their associated spiral ganglion neurons (SGNs). Of all the forms of deafness, auditory neuropathy is of particular concern. This condition, defined primarily by damage to the SGNs with relative preservation of the hair cells, is responsible for a substantial proportion of patients with hearing impairment. Although the loss of hair cells can be circumvented partially by a cochlear implant, no routine treatment is available for sensory neuron loss, as poor innervation limits the prospective performance of an implant. Using stem cells to recover the damaged sensory circuitry is a potential therapeutic strategy. Here we present a protocol to induce differentiation from human embryonic stem cells (hESCs) using signals involved in the initial specification of the otic placode. We obtained two types of otic progenitors able to differentiate in vitro into hair-cell-like cells and auditory neurons that display expected electrophysiological properties. Moreover, when transplanted into an auditory neuropathy model, otic neuroprogenitors engraft, differentiate and significantly improve auditory-evoked response thresholds. These results should stimulate further research into the development of a cell-based therapy for deafness.


Neuron | 2011

Prestin-Driven Cochlear Amplification Is Not Limited by the Outer Hair Cell Membrane Time Constant

Stuart L. Johnson; Maryline Beurg; Walter Marcotti; Robert Fettiplace

Summary Outer hair cells (OHCs) provide amplification in the mammalian cochlea using somatic force generation underpinned by voltage-dependent conformational changes of the motor protein prestin. However, prestin must be gated by changes in membrane potential on a cycle-by-cycle basis and the periodic component of the receptor potential may be greatly attenuated by low-pass filtering due to the OHC time constant (τm), questioning the functional relevance of this mechanism. Here, we measured τm from OHCs with a range of characteristic frequencies (CF) and found that, at physiological endolymphatic calcium concentrations, approximately half of the mechanotransducer (MT) channels are opened at rest, depolarizing the membrane potential to near −40 mV. The depolarized resting potential activates a voltage-dependent K+ conductance, thus minimizing τm and expanding the membrane filter so there is little receptor potential attenuation at the cells CF. These data suggest that minimal τm filtering in vivo ensures optimal activation of prestin.


The Journal of Physiology | 2003

Sodium and calcium currents shape action potentials in immature mouse inner hair cells

Walter Marcotti; Stuart L. Johnson; Alfons Rüsch; Corné J. Kros

Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage‐dependent inactivation for the Na+ current, and slower, partially Ca2+‐dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action‐potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action‐potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action‐potential frequency.


The Journal of Physiology | 2005

Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells

Stuart L. Johnson; Walter Marcotti; Corné J. Kros

Developmental changes in the coupling between Ca2+ entry and exocytosis were studied in mouse inner hair cells (IHCs) which, together with the afferent endings, form the primary synapse of the mammalian auditory system. Ca2+ currents (ICa) and changes in membrane capacitance (ΔCm) were recorded using whole‐cell voltage clamp from cells maintained at body temperature, using physiological (1.3 mm) extracellular Ca2+. The magnitudes of both ICa and ΔCm increased with maturation from embryonic stages until postnatal day 6 (P6). Subsequently, ICa gradually declined to a steady level of about −100 pA from P13 while the Ca2+‐induced ΔCm remained relatively constant, indicating a developmental increase in the Ca2+ efficiency of exocytosis. Although the size of ICa changed during development, its activation properties did not, suggesting the presence of a homogeneous population of Ca2+ channels in IHCs throughout development. The Ca2+ dependence of exocytosis changed with maturation from a fourth power relation in immature cells to an approximately linear relation in mature cells. This change applies to the release of both a readily releasable pool (RRP) and a slower secondary pool of vesicles, implying a common release mechanism for these two kinetically distinct pools that becomes modified during development. The increased Ca2+ efficiency and linear Ca2+ dependence of mature IHC exocytosis, especially over the physiological range of intracellular Ca2+, could improve the high‐fidelity transmission of both brief and long‐lasting stimulation. These properties make the mature cell ideally suited for fine intensity discrimination over a wide dynamic range.


Nature Neuroscience | 2010

Synaptotagmin IV determines the linear Ca2+ dependence of vesicle fusion at auditory ribbon synapses

Stuart L. Johnson; Christoph Franz; Stephanie Kuhn; David N. Furness; Lukas Rüttiger; Stefan Münkner; Marcelo N. Rivolta; Elizabeth P. Seward; Harvey R. Herschman; Jutta Engel; Marlies Knipper; Walter Marcotti

Mammalian cochlear inner hair cells (IHCs) are specialized for the dynamic coding of continuous and finely graded sound signals. This ability is largely conferred by the linear Ca2+ dependence of neurotransmitter release at their synapses, which is also a feature of visual and olfactory systems. The prevailing hypothesis is that linearity in IHCs occurs through a developmental change in the Ca2+ sensitivity of synaptic vesicle fusion from the nonlinear (high order) Ca2+ dependence of immature spiking cells. However, the nature of the Ca2+ sensor(s) of vesicle fusion at hair cell synapses is unknown. We found that synaptotagmin IV was essential for establishing the linear exocytotic Ca2+ dependence in adult rodent IHCs and immature outer hair cells. Moreover, the expression of the hitherto undetected synaptotagmins I and II correlated with a high-order Ca2+ dependence in IHCs. We propose that the differential expression of synaptotagmins determines the characteristic Ca2+ sensitivity of vesicle fusion at hair cell synapses.


The Journal of Physiology | 2004

A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells

Walter Marcotti; Stuart L. Johnson; Corné J. Kros

From just after birth, mouse inner hair cells (IHCs) expressed a Ca2+‐activated K+ current that was reduced by intracellular BAPTA at concentrations ≥ 1 mm. The block of this current by nifedipine suggests the direct involvement of Cav1.3 Ca2+ channels in its activation. On the basis of its high sensitivity to apamin (KD 360 pm) it was identified as a small‐conductance Ca2+‐activated K+ current (SK), probably SK2. A similar current was also found in outer hair cells (OHCs) from the beginning of the second postnatal week. In both cell types the appearance of the SK current coincided with their becoming responsive to acetylcholine (ACh), the main efferent neurotransmitter in the cochlea. The effect of ACh on IHCs was abolished when they were simultaneously superfused with strychnine, consistent with the presence of nicotinic ACh receptors (nAChRs). Extracellular Ca2+ either potentiated or blocked the nAChR current depending on its concentration, as previously reported for the recombinant α9α10 nAChR. Outward currents activated by ACh were reduced by blocking the SK current with apamin or by preventing SK current activation with intracellular BAPTA (≥ 10 mm). The endogenous mobile Ca2+ buffer concentration was estimated to be equivalent to about 1 mm BAPTA, suggesting that in physiological conditions the SK channel is significantly activated by Ca2+ influx through both Cav1.3 Ca2+ channels and α9α10 nAChRs. Current clamp experiments showed that in IHCs the SK current is required for sustaining a train of action potentials and also modulates their frequency when activated by ACh.


The Journal of Neuroscience | 2008

Tonotopic Variation in the Calcium Dependence of Neurotransmitter Release and Vesicle Pool Replenishment at Mammalian Auditory Ribbon Synapses

Stuart L. Johnson; Andrew Forge; Marlies Knipper; Stefan Münkner; Walter Marcotti

The mammalian cochlea is specialized to recognize and process complex auditory signals with remarkable acuity and temporal precision over a wide frequency range. The quality of the information relayed to the auditory afferent fibers mainly depends on the transfer characteristics of inner hair cell (IHC) ribbon synapses. To investigate the biophysical properties of the synaptic machinery, we measured changes in membrane capacitance (ΔCm) in low-frequency (apical region, ∼300 Hz) and high-frequency (basal, ∼30 kHz) gerbil IHCs maintained in near physiological conditions (1.3 mm extracellular Ca2+ and body temperature). With maturation, the Ca2+ efficiency of exocytosis improved in both apical and basal IHCs and was more pronounced in the latter. Prehearing IHCs showed a similar Ca2+ cooperativity of exocytosis despite the smaller ΔCm in apical cells. After maturation, ΔCm in high-frequency IHCs increased linearly with the Ca2+ current, whereas, somewhat surprisingly, the relationship was significantly more nonlinear in low-frequency cells. This tonotopic difference seemed to be correlated with ribbon synapse morphology (spherical in apical and ellipsoid in basal IHCs) but not with the expression level of the proposed Ca2+ sensor otoferlin or the spatial coupling between Ca2+ channels and active zones. Repetitive stimulation of adult IHCs showed that vesicle pool refilling could become rate limiting for vesicle release, with high-frequency IHCs able to sustain greater release rates. Together, our findings provide the first evidence for a tonotopic difference in the properties of the synaptic machinery in mammalian IHCs, which could be essential for fine-tuning their receptor characteristics during sound stimulation.


Nature Neuroscience | 2011

Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

Stuart L. Johnson; Tobias Eckrich; Stephanie Kuhn; Valeria Zampini; Christoph Franz; Kishani M Ranatunga; Terri Roberts; Sergio Masetto; Marlies Knipper; Corné J. Kros; Walter Marcotti

Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHCs resting membrane potential (Vm), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by triggering small-conductance Ca2+-activated K+ (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.


The Journal of Physiology | 2010

Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

Valeria Zampini; Stuart L. Johnson; Christoph Franz; Neil D. Lawrence; Stefan Münkner; Jutta Engel; Marlies Knipper; Jacopo Magistretti; Sergio Masetto; Walter Marcotti

Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L‐type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near‐physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre‐synaptic site co‐localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.

Collaboration


Dive into the Stuart L. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Olt

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge