Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart M. Brierley is active.

Publication


Featured researches published by Stuart M. Brierley.


Gut | 2005

Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function

Amanda J. Page; Stuart M. Brierley; Christopher M. Martin; Margaret P. Price; Erin L. Symonds; R Butler; John A. Wemmie; L A Blackshaw

Aims: Members of the acid sensing ion channel (ASIC) family are strong candidates as mechanical transducers in sensory function. The authors have shown that ASIC1a has no role in skin but a clear influence in gastrointestinal mechanotransduction. Here they investigate further ASIC1a in gut mechanoreceptors, and compare its influence with ASIC2 and ASIC3. Methods and results: Expression of ASIC1a, 2, and 3 mRNA was found in vagal (nodose) and dorsal root ganglia (DRG), and was lost in mice lacking the respective genes. Recordings of different classes of splanchnic colonic afferents and vagal gastro-oesophageal afferents revealed that disruption of ASIC1a increased the mechanical sensitivity of all afferents in both locations. Disruption of ASIC2 had varied effects: increased mechanosensitivity in gastro-oesophageal mucosal endings, decreases in gastro-oesophageal tension receptors, increases in colonic serosal endings, and no change in colonic mesenteric endings. In ASIC3-/- mice, all afferent classes had markedly reduced mechanosensitivity except gastro-oesophageal mucosal receptors. Observations of gastric emptying and faecal output confirmed that increases in mechanosensitivity translate to changes in digestive function in conscious animals. Conclusions: These data show that ASIC3 makes a critical positive contribution to mechanosensitivity in three out of four classes of visceral afferents. The presence of ASIC1a appears to provide an inhibitory contribution to the ion channel complex, whereas the role of ASIC2 differs widely across subclasses of afferents. These findings contrast sharply with the effects of ASIC1, 2, and 3 in skin, suggesting that targeting these subunits with pharmacological agents may have different and more pronounced effects on mechanosensitivity in the viscera.


Gastroenterology | 2009

The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli

Stuart M. Brierley; Patrick A. Hughes; Amanda J. Page; Kelvin Y. Kwan; Christopher M. Martin; Tracey A. O'Donnell; Nicole J. Cooper; Andrea M. Harrington; Birgit Adam; Tobias Liebregts; Gerald Holtmann; David P. Corey; Grigori Y. Rychkov; L. Ashley Blackshaw

BACKGROUND & AIMS The transient receptor potential (TRP) channel family includes transducers of mechanical and chemical stimuli for visceral sensory neurons. TRP ankyrin 1 (TRPA1) is implicated in inflammatory pain; it interacts with G-protein-coupled receptors, but little is known about its role in the gastrointestinal (GI) tract. Sensory information from the GI tract is conducted via 5 afferent subtypes along 3 pathways. METHODS Nodose and dorsal root ganglia whose neurons innnervate 3 different regions of the GI tract were analyzed from wild-type and TRPA1(-/-) mice using quantitative reverse-transcription polymerase chain reaction, retrograde labeling, and in situ hybridization. Distal colon sections were analyzed by immunohistochemistry. In vitro electrophysiology and pharmacology studies were performed, and colorectal distension and visceromotor responses were measured. Colitis was induced by administration of trinitrobenzene sulphonic acid. RESULTS TRPA1 is required for normal mechano- and chemosensory function in specific subsets of vagal, splanchnic, and pelvic afferents. The behavioral responses to noxious colonic distension were substantially reduced in TRPA1(-/-) mice. TRPA1 agonists caused mechanical hypersensitivity, which increased in mice with colitis. Colonic afferents were activated by bradykinin and capsaicin, which mimic effects of tissue damage; wild-type and TRPA1(-/-) mice had similar direct responses to these 2 stimuli. After activation by bradykinin, wild-type afferents had increased mechanosensitivity, whereas, after capsaicin exposure, mechanosensitivity was reduced: these changes were absent in TRPA1(-/-) mice. No interaction between protease-activated receptor-2 and TRPA1 was evident. CONCLUSIONS These findings demonstrate a previously unrecognized role for TRPA1 in normal and inflamed mechanosensory function and nociception within the viscera.


Gastroenterology | 2008

Selective role for TRPV4 ion channels in visceral sensory pathways.

Stuart M. Brierley; Amanda J. Page; Patrick A. Hughes; Birgit Adam; Tobias Liebregts; Nicole J. Cooper; Gerald Holtmann; Wolfgang Liedtke; L. Ashley Blackshaw

BACKGROUND & AIMS Although there are many candidates as molecular mechanotransducers, so far there has been no evidence for molecular specialization of visceral afferents. Here, we show that colonic afferents express a specific molecular transducer that underlies their specialized mechanosensory function: the transient receptor potential channel, vanilloid 4 (TRPV4). METHODS We found TRPV4 mRNA is highly enriched in colonic sensory neurons compared with other visceral and somatic sensory neurons. TRPV4 protein was found in colonic nerve fibers from patients with inflammatory bowel disease, and it colocalized in a subset of fibers with the sensory neuropeptide CGRP in mice. We characterized the responses of 8 subtypes of vagal, splanchnic, and pelvic mechanoreceptors. RESULTS Mechanosensory responses of colonic serosal and mesenteric afferents were enhanced by a TRPV4 agonist and dramatically reduced by targeted deletion of TRPV4 or by a TRP antagonist. Other subtypes of vagal and pelvic afferents, by contrast, were unaffected by these interventions. The behavioral responses to noxious colonic distention were also substantially reduced in mice lacking TRPV4. CONCLUSIONS These data indicate that TRPV4 contributes to mechanically evoked visceral pain, with relevance to human disease. In view of its distribution in favor of specific populations of visceral afferents, we propose that TRPV4 may present a selective novel target for the reduction of visceral pain, which is an important opportunity in the absence of current treatments.


Gut | 2009

Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes

Richard L. Young; Kate Sutherland; Nektaria Pezos; Stuart M. Brierley; Michael Horowitz; Christopher K. Rayner; L A Blackshaw

Objective: Nutrient feedback from the small intestine modulates upper gastrointestinal function and energy intake; however, the molecular mechanism of nutrient detection is unknown. In the tongue, sugars are detected via taste T1R2 and T1R3 receptors and signalled via the taste G-protein α-gustducin (Gαgust) and the transient receptor potential ion channel, TRPM5. These taste molecules are also present in the rodent small intestine, and may regulate gastrointestinal function. Subjects and methods: Absolute transcript levels for T1R2, T1R3, Gαgust and TRPM5 were quantified in gastrointestinal mucosal biopsies from subjects with and without type 2 diabetes; immunohistochemistry was used to locate Gαgust. Effects of luminal glucose on jejunal expression of taste molecules were also quantified in mice. Results: T1R2, T1R3, Gαgust and TRPM5 were preferentially expressed in the proximal small intestine in humans, with immunolabelling for Gαgust localised to solitary cells dispersed throughout the duodenal villous epithelium. Expression of T1R2, T1R3, TRPM5 (all p<0.05) and Gαgust (p<0.001) inversely correlated with blood glucose concentration in type 2 diabetes subjects but, as a group, did not differ from control subjects. Transcript levels of T1R2 were reduced by 84% following jejunal glucose perfusion in mice (p<0.05). Conclusions: Taste molecules are expressed in nutrient detection regions of the proximal small intestine in humans, consistent with a role in “tasting”. This taste molecule expression is decreased in diabetic subjects with elevated blood glucose concentration, and decreased by luminal glucose in mice, indicating that intestinal “taste” signalling is under dynamic metabolic and luminal control.


The Journal of Physiology | 2005

Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice

Stuart M. Brierley; R. Carter; W. Jones; Linjing Xu; David R. Robinson; Gareth A. Hicks; G.F. Gebhart; L. Ashley Blackshaw

Lumbar splanchnic (LSN) and sacral pelvic (PN) nerves convey different mechanosensory information from the colon to the spinal cord. Here we determined whether these pathways also differ in their chemosensitivity and receptor expression. Using an in vitro mouse colon preparation, individual primary afferents were tested with selective P2X and transient receptor potential vanilloid receptor 1 (TRPV1) receptor ligands. Afferent cell bodies in thoracolumbar and lumbosacral dorsal root ganglia (DRG) were retrogradely labelled from the colon and analysed for P2X3‐ and TRPV1‐like immunoreactivity (LI). Forty per cent of LSN afferents responded to α,β‐methylene adenosine 5′‐triphosphate (α,β‐meATP; 1 mm), an effect that was concentration dependent and reversed by the P2X antagonist pyridoxyl5‐phosphate 6‐azophenyl‐2′,4′‐disulphonic acid (PPADS) (100 μm). Significantly fewer PN afferents (7%) responded to α,β‐meATP. Correspondingly, 36% of colonic thoracolumbar DRG neurones exhibited P2X3‐LI compared with only 19% of colonic lumbosacral neurones. Capsaicin (3 μm) excited 61% of LSN afferents and 47% of PN afferents; 82% of thoracolumbar and 50% of lumbosacral colonic DRG neurones displayed TRPV1‐LI. Mechanically insensitive afferents were recruited by α,β‐meATP or capsaicin, and were almost exclusive to the LSN. Capsaicin‐responsive LSN afferents displayed marked mechanical desensitization after responding to capsaicin, which did not occur in capsaicin‐responsive PN afferents. Therefore, colonic LSN and PN pathways differ in their chemosensitivity to known noxious stimuli and their corresponding receptor expression. As these pathways relay information that may relate to symptoms in functional gastrointestinal disease, these results may have implications for the efficacy of therapies targeting receptor modulation.


Gut | 2009

Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses.

Patrick A. Hughes; Stuart M. Brierley; Christopher M. Martin; Simon Jonathan Brookes; D R Linden; L A Blackshaw

Objective: Intestinal infection evokes hypersensitivity in a subgroup of patients with irritable bowel syndrome (IBS) long after healing of the initial injury. Trinitrobenzene sulfonic acid (TNBS)-induced colitis in rodents likewise results in delayed maintained hypersensitivity, regarded as a model of some aspects of IBS. The colon and rectum have a complex sensory innervation, comprising five classes of mechanosensitive afferents in the splanchnic and pelvic nerves. Their plasticity may hold the key to underlying mechanisms in IBS. Our aim was therefore to determine the contribution of each afferent class in each pathway towards post-inflammatory visceral hypersensitivity. Design: TNBS was administered rectally and mice were studied after 7 (acute) or 28 (recovery) days. In vitro preparations of mouse colorectum with attached pelvic or splanchnic nerves were used to examine the mechanosensitivity of individual colonic afferents. Results: Mild inflammation of the colon was evident acutely which was absent at the recovery stage. TNBS treatment did not alter proportions of the five afferent classes between treatment groups. In pelvic afferents little or no difference in response to mechanical stimuli was apparent in any class between control and acute mice. However, major increases in mechanosensitivity were recorded from serosal afferents in mice after recovery, while responses from other subtypes were unchanged. Both serosal and mesenteric splanchnic afferents were hypersensitive at both acute and recovery stages. Conclusions: Colonic afferents with high mechanosensory thresholds contribute to inflammatory hypersensitivity, but not those with low thresholds. Pelvic afferents become involved mainly following recovery from inflammation, whereas splanchnic afferents are implicated during both inflammation and recovery.


Gut | 2013

Sensory neuro-immune interactions differ between Irritable Bowel Syndrome subtypes

Patrick A. Hughes; Andrea M. Harrington; Joel Castro; Tobias Liebregts; Birgit Adam; Dallas J Grasby; Nicole J. Isaacs; Lochana Maldeniya; Christopher M. Martin; Jenny Persson; Jane M. Andrews; Gerald Holtmann; L. Ashley Blackshaw; Stuart M. Brierley

Objective The gut is a major site of contact between immune and sensory systems and evidence suggests that patients with irritable bowel syndrome (IBS) have immune dysfunction. Here we show how this dysfunction differs between major IBS subgroups and how immunocytes communicate with sensory nerves. Design Peripheral blood mononuclear cell supernatants from 20 diarrhoea predominant IBS (D-IBS) patients, 15 constipation predominant IBS (C-IBS) patients and 36 healthy subjects were applied to mouse colonic sensory nerves and effects on mechanosensitivity assessed. Cytokine/chemokine concentration in the supernatants was assessed by proteomic analysis and correlated with abdominal symptoms, and expression of cytokine receptors evaluated in colonic dorsal root ganglia neurons. We then determined the effects of specific cytokines on colonic afferents. Results D-IBS supernatants caused mechanical hypersensitivity of mouse colonic afferent endings, which was reduced by infliximab. C-IBS supernatants did not, but occasionally elevated basal discharge. Supernatants of healthy subjects inhibited afferent mechanosensitivity via an opioidergic mechanism. Several cytokines were elevated in IBS supernatants, and levels correlated with pain frequency and intensity in patients. Visceral afferents expressed receptors for four cytokines: IL-1β, IL-6, IL-10 and TNF-α. TNF-α most effectively caused mechanical hypersensitivity which was blocked by a transient receptor potential channel TRPA1 antagonist. IL-1β elevated basal firing, and this was lost after tetrodotoxin blockade of sodium channels. Conclusions Distinct patterns of immune dysfunction and interaction with sensory pathways occur in different patient groups and through different intracellular pathways. Our results indicate IBS patient subgroups would benefit from selective targeting of the immune system.


Pain | 2011

A novel role for TRPM8 in visceral afferent function

Andrea M. Harrington; Patrick A. Hughes; Christopher M. Martin; Jing Yang; Joel Castro; Nicole J. Isaacs; L. Ashley Blackshaw; Stuart M. Brierley

&NA; Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperatures and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of bowel hypersensitivity; however, the underlying mechanisms of action are unclear. Here we determined the role of TRPM8 in colonic sensory pathways. Laser capture microdissection, quantitative reverse transcription‐polymerase chain reaction (RT‐PCR), immunofluorescence, and retrograde tracing were used to localise TRPM8 to colonic primary afferent neurons. In vitro extracellular single‐fibre afferent recordings were used to determine the effect of TRPM8 channel activation on the chemosensory and mechanosensory function of colonic high‐threshold afferent fibres. TRPM8 mRNA was present in colonic DRG neurons, whereas TRPM8 protein was present on nerve fibres throughout the wall of the colon. A subpopulation (24%, n = 58) of splanchnic serosal and mesenteric afferents tested responded directly to icilin (5 μmol/L). Subsequently, icilin significantly desensitised afferents to mechanical stimulation (P < .0001; n = 37). Of the splanchnic afferents responding to icilin, 21 (33%) also responded directly to the TRPV1 agonist capsaicin (3 μmol/L), and icilin reduced the direct chemosensory response to capsaicin. Icilin also prevented mechanosensory desensitization and sensitization induced by capsaicin and the TRPA1 agonist AITC (40 μmol/L), respectively. TRPM8 is present on a select population of colonic high threshold sensory neurons, which may also co‐express TRPV1. TRPM8 couples to TRPV1 and TRPA1 to inhibit their downstream chemosensory and mechanosensory actions. TRPM8 was localised to high‐threshold visceral afferent neurons. On visceral afferent peripheral endings, TRPM8 activation affected TRPV1 and TRPA1 downstream chemosensory and mechanosensory actions.


The Journal of Physiology | 2011

TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity

Stuart M. Brierley; Joel Castro; Andrea M. Harrington; Patrick A. Hughes; Amanda J. Page; Grigori Y. Rychkov; L. Ashley Blackshaw

Non‐technical summary  Detecting mechanical stimuli is vital to determining our responses to environmental challenges. The speed required for this process suggests ion channels are opened in response to mechanical forces. A specialised membrane protein called the TRPA1 ion channel mediates chemical based pain; however its role in mechanical pain remains unresolved. Here we show that TRPA1 contributes to the detection of mechanical stimuli in a select set of pain sensing neurons. Furthermore, we also show that acute activation of this channel enhances the mechanical responsiveness of these neurons. Finally, we also show that increasing the expression of TRPA1 causes a further enhancement in the mechanical response. These findings suggest that a drug designed to block TRPA1 would be beneficial for the treatment of numerous pathological conditions associated with mechanical pain.


Nature Reviews Gastroenterology & Hepatology | 2014

Neuroplasticity and dysfunction after gastrointestinal inflammation.

Stuart M. Brierley; David R. Linden

The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.

Collaboration


Dive into the Stuart M. Brierley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Castro

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

L. Ashley Blackshaw

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Grundy

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge