Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart McCorrister is active.

Publication


Featured researches published by Stuart McCorrister.


Mucosal Immunology | 2016

Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells

Kelly B. Arnold; Adam Burgener; Kenzie Birse; Laura Romas; Laura J. Dunphy; Kamnoosh Shahabi; Max Abou; Garrett Westmacott; Stuart McCorrister; Jessie Kwatampora; Billy Nyanga; Joshua Kimani; Lindi Masson; Lenine J. Liebenberg; Salim Safurdeen. Abdool Karim; Jo-Ann S. Passmore; Douglas A. Lauffenburger; Rupert Kaul; Lyle R. McKinnon

Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1β (interleukin-1β), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.


Journal of Microbiological Methods | 2013

Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes

Clifford G. Clark; Peter Kruczkiewicz; Cai Guan; Stuart McCorrister; Patrick Chong; John L. Wylie; Paul Van Caeseele; Helen Tabor; Phillip Snarr; Matthew W. Gilmour; Eduardo N. Taboada; Garrett Westmacott

It is rapidly becoming apparent that many E. coli pathotypes cause a considerable burden of human disease. Surveillance of these organisms is difficult because there are few or no simple, rapid methods for detecting and differentiating the different pathotypes. MALDI-TOF mass spectroscopy has recently been rapidly and enthusiastically adopted by many clinical laboratories as a diagnostic method because of its high throughput, relatively low cost, and adaptability to the laboratory workflow. To determine whether the method could be adapted for E. coli pathotype differentiation the Bruker Biotyper methodology and a second methodology adapted from the scientific literature were tested on isolates representing eight distinct pathotypes and two other groups of E. coli. A total of 136 isolates was used for this study. Results confirmed that the Bruker Biotyper methodology that included extraction of proteins from bacterial cells was capable of identifying E. coli isolates from all pathotypes to the species level and, furthermore, that the Bruker extraction and MALDI-TOF MS with the evaluation criteria developed in this work was effective for differentiating most pathotypes.


PLOS ONE | 2014

Proteomic Analysis of a NAP1 Clostridium difficile Clinical Isolate Resistant to Metronidazole

Patrick Chong; Tarah Lynch; Stuart McCorrister; Pamela Kibsey; Mark A. Miller; Denise Gravel; Garrett Westmacott; Michael R. Mulvey

Background Clostridium difficile is an anaerobic, Gram-positive bacterium that has been implicated as the leading cause of antibiotic-associated diarrhea. Metronidazole is currently the first-line treatment for mild to moderate C. difficile infections. Our laboratory isolated a strain of C. difficile with a stable resistance phenotype to metronidazole. A shotgun proteomics approach was used to compare differences in the proteomes of metronidazole-resistant and -susceptible isolates. Methodology/Principal Findings NAP1 C. difficile strains CD26A54_R (Met-resistant), CD26A54_S (reduced- susceptibility), and VLOO13 (Met-susceptible) were grown to mid-log phase, and spiked with metronidazole at concentrations 2 doubling dilutions below the MIC. Peptides from each sample were labeled with iTRAQ and subjected to 2D-LC-MS/MS analysis. In the absence of metronidazole, higher expression was observed of some proteins in C. difficile strains CD26A54_S and CD26A54_R that may be involved with reduced susceptibility or resistance to metronidazole, including DNA repair proteins, putative nitroreductases, and the ferric uptake regulator (Fur). After treatment with metronidazole, moderate increases were seen in the expression of stress-related proteins in all strains. A moderate increase was also observed in the expression of the DNA repair protein RecA in CD26A54_R. Conclusions/Significance This study provided an in-depth proteomic analysis of a stable, metronidazole-resistant C. difficile isolate. The results suggested that a multi-factorial response may be associated with high level metronidazole-resistance in C. difficile, including the possible roles of altered iron metabolism and/or DNA repair.


PLOS Pathogens | 2016

Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract

Alexander S. Zevin; Irene Y. Xie; Kenzie Birse; Kelly B. Arnold; Laura Romas; Garrett Westmacott; Richard M. Novak; Stuart McCorrister; Lyle R. McKinnon; Craig R. Cohen; Romel D. Mackelprang; Jairam R. Lingappa; Doug Lauffenburger; Nichole R. Klatt; Adam Burgener

The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.


Journal of Virology | 2015

Molecular Signatures of Immune Activation and Epithelial Barrier Remodeling Are Enhanced during the Luteal Phase of the Menstrual Cycle: Implications for HIV Susceptibility

Kenzie Birse; Kelly B. Arnold; Richard M. Novak; Stuart McCorrister; Souradet Y. Shaw; Garrett Westmacott; Terry B. Ball; Douglas A. Lauffenburger; Adam Burgener

ABSTRACT The variable infectivity and transmissibility of HIV/SHIV has been recently associated with the menstrual cycle, with particular susceptibility observed during the luteal phase in nonhuman primate models and ex vivo human explant cultures, but the mechanism is poorly understood. Here, we performed an unbiased, mass spectrometry-based proteomic analysis to better understand the mucosal immunological processes underpinning this observed susceptibility to HIV infection. Cervicovaginal lavage samples (n = 19) were collected, characterized as follicular or luteal phase using days since last menstrual period, and analyzed by tandem mass spectrometry. Biological insights from these data were gained using a spectrum of computational methods, including hierarchical clustering, pathway analysis, gene set enrichment analysis, and partial least-squares discriminant analysis with LASSO feature selection. Of the 384 proteins identified, 43 were differentially abundant between phases (P < 0.05, ≥2-fold change). Cell-cell adhesion proteins and antiproteases were reduced, and leukocyte recruitment (interleukin-8 pathway, P = 1.41E–5) and extravasation proteins (P = 5.62E–4) were elevated during the luteal phase. LASSO/PLSDA identified a minimal profile of 18 proteins that best distinguished the luteal phase. This profile included cytoskeletal elements and proteases known to be involved in cellular movement. Gene set enrichment analysis associated CD4+ T cell and neutrophil gene set signatures with the luteal phase (P < 0.05). Taken together, our findings indicate a strong association between proteins involved in tissue remodeling and leukocyte infiltration with the luteal phase, which may represent potential hormone-associated mechanisms of increased susceptibility to HIV. IMPORTANCE Recent studies have discovered an enhanced susceptibility to HIV infection during the progesterone-dominant luteal phase of the menstrual cycle. However, the mechanism responsible for this enhanced susceptibility has not yet been determined. Understanding the source of this vulnerability will be important for designing efficacious HIV prevention technologies for women. Furthermore, these findings may also be extrapolated to better understand the impact of exogenous hormone application, such as the use of hormonal contraceptives, on HIV acquisition risk. Hormonal contraceptives are the most widely used contraceptive method in sub-Saharan Africa, the most HIV-burdened area of the world. For this reason, research conducted to better understand how hormones impact host immunity and susceptibility factors important for HIV infection is a global health priority.


Journal of Microbiological Methods | 2015

MALDI-TOF MS detection of carbapenemase activity in clinical isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii compared against the Carba-NP assay

Patrick Chong; Stuart McCorrister; Mark S. Unger; David Boyd; Michael R. Mulvey; Garrett Westmacott

MALDI-TOF MS detection of carbapenemase-activity in Gram-negative bacteria was compared against the Carba-NP assay. MALDI-TOF MS detected activity from 99% of the strains, from all types of carbapenemase (200/202), while Carba-NP assays detected activity from 85% (45/53) of the tested isolates and could not consistently identify OXA- or GES carbapenemase activity.


Journal of Virology | 2013

A Systems Biology Examination of the Human Female Genital Tract Shows Compartmentalization of Immune Factor Expression

Adam Burgener; Annelie Tjernlund; Tove Kaldensjö; Max Abou; Stuart McCorrister; Garrett Westmacott; Kenzie Mogk; Emma Ambrose; Kristina Broliden; Blake Ball

ABSTRACT Many mucosal factors in the female genital tract (FGT) have been associated with HIV susceptibility, but little is known about their anatomical distribution in the FGT compartments. This study comprehensively characterized global immune factor expression in different tissue sites of the lower and upper FGT by using a systems biology approach. Tissue sections from the ectocervix, endocervix, and endometrium from seven women who underwent hysterectomy were analyzed by a combination of quantitative mass spectrometry and immunohistochemical staining. Of the >1,000 proteins identified, 281 were found to be differentially abundant in different tissue sites. Hierarchical clustering identified four major functional pathways distinguishing compartments, including innate immune pathways (acute-phase response, LXR/RXR) and development (RhoA signaling, gluconeogenesis), which were enriched in the ectocervix/endocervix and endometrium, respectively. Immune factors important for HIV susceptibility, including antiproteases, immunoglobulins, complement components, and antimicrobial factors, were most abundant in the ectocervix/endocervix, while the endometrium had a greater abundance of certain factors that promote HIV replication. Immune factor abundance is heterogeneous throughout the FGT and shows unique immune microenvironments for HIV based on the exposure site. This may have important implications for early events in HIV transmission and site-specific susceptibility to HIV in the FGT.


Proteomics | 2013

High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis

Derek R. Stein; Xiaojie Hu; Stuart McCorrister; Garrett Westmacott; Francis A. Plummer; Terry B. Ball; Michael Carpenter

MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off‐gel IEF (OG‐IEF) and high pH RP (Hp‐RP) column chromatography have both been successfully utilized as a first‐dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12‐fraction replicate analysis, Hp‐RP resulted in more peptides and proteins identified than OG‐IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp‐RP. This leads to a more uniform distribution of total and unique peptides for Hp‐RP across all fractions collected. These results suggest that fractionation by Hp‐RP over OG‐IEF is the better choice for typical complex proteome analysis.


Journal of Clinical Microbiology | 2015

Rapid, Sensitive, and Specific Escherichia coli H Antigen Typing by Matrix-Assisted Laser Desorption Ionization–Time of Flight-Based Peptide Mass Fingerprinting

Huixia Chui; Michael Chan; Drexler Hernandez; Patrick Chong; Stuart McCorrister; Alyssia Robinson; Matthew Walker; Lorea Peterson; Sam Ratnam; David J. M. Haldane; Sadjia Bekal; John L. Wylie; Linda Chui; Garrett Westmacott; Bianli Xu; Mike Drebot; Celine Nadon; J. David Knox; Gehua Wang; Keding Cheng

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has gained popularity in recent years for rapid bacterial identification, mostly at the genus or species level. In this study, a rapid method to identify the Escherichia coli flagellar antigen (H antigen) at the subspecies level was developed using a MALDI-TOF MS platform with high specificity and sensitivity. Flagella were trapped on a filter membrane, and on-filter trypsin digestion was performed. The tryptic digests of each flagellin then were collected and analyzed by MALDI-TOF MS through peptide mass fingerprinting. Sixty-one reference strains containing all 53 H types and 85 clinical strains were tested and compared to serotyping designations. Whole-genome sequencing was used to resolve conflicting results between the two methods. It was found that DHB (2,5-dihydroxybenzoic acid) worked better than CHCA (α-cyano-4-hydroxycinnamic acid) as the matrix for MALDI-TOF MS, with higher confidence during protein identification. After method optimization, reference strains representing all 53 E. coli H types were identified correctly by MALDI-TOF MS. A custom E. coli flagellar/H antigen database was crucial for clearly identifying the E. coli H antigens. Of 85 clinical isolates tested by MALDI-TOF MS-H, 75 identified MS-H types (88.2%) matched results obtained from traditional serotyping. Among 10 isolates where the results of MALDI-TOF MS-H and serotyping did not agree, 60% of H types characterized by whole-genome sequencing agreed with those identified by MALDI-TOF MS-H, compared to only 20% by serotyping. This MALDI-TOF MS-H platform can be used for rapid and cost-effective E. coli H antigen identification, especially during E. coli outbreaks.


PLOS ONE | 2013

Unbiased Proteomics Analysis Demonstrates Significant Variability in Mucosal Immune Factor Expression Depending on the Site and Method of Collection

Kenzie Birse; Adam Burgener; Garrett Westmacott; Stuart McCorrister; Richard M. Novak; T. Blake Ball

Female genital tract secretions are commonly sampled by lavage of the ectocervix and vaginal vault or via a sponge inserted into the endocervix for evaluating inflammation status and immune factors critical for HIV microbicide and vaccine studies. This study uses a proteomics approach to comprehensively compare the efficacy of these methods, which sample from different compartments of the female genital tract, for the collection of immune factors. Matching sponge and lavage samples were collected from 10 healthy women and were analyzed by tandem mass spectrometry. Data was analyzed by a combination of differential protein expression analysis, hierarchical clustering and pathway analysis. Of the 385 proteins identified, endocervical sponge samples collected nearly twice as many unique proteins as cervicovaginal lavage (111 vs. 61) with 55% of proteins common to both (213). Each method/site identified 73 unique proteins that have roles in host immunity according to their gene ontology. Sponge samples enriched for specific inflammation pathways including acute phase response proteins (p = 3.37×10−24) and LXR/RXR immune activation pathways (p = 8.82×10−22) while the role IL-17A in psoriasis pathway (p = 5.98×10−4) and the complement system pathway (p = 3.91×10−3) were enriched in lavage samples. Many host defense factors were differentially enriched (p<0.05) between sites including known/potential antimicrobial factors (n = 21), S100 proteins (n = 9), and immune regulatory factors such as serpins (n = 7). Immunoglobulins (n = 6) were collected at comparable levels in abundance in each site although 25% of those identified were unique to sponge samples. This study demonstrates significant differences in types and quantities of immune factors and inflammation pathways collected by each sampling technique. Therefore, clinical studies that measure mucosal immune activation or factors assessing HIV transmission should utilize both collection methods to obtain the greatest representation of immune factors secreted into the female genital tract.

Collaboration


Dive into the Stuart McCorrister's collaboration.

Top Co-Authors

Avatar

Garrett Westmacott

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Keding Cheng

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Gehua Wang

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Angela Sloan

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celine Nadon

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Mike Drebot

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge