Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart R.W. Bellamy is active.

Publication


Featured researches published by Stuart R.W. Bellamy.


Nucleic Acids Research | 2009

Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands

Kelly L. Sanders; Lucy E. Catto; Stuart R.W. Bellamy; Stephen E. Halford

Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.


Nucleic Acids Research | 2009

Dissecting protein-induced DNA looping dynamics in real time

Niels Laurens; Stuart R.W. Bellamy; August F. Harms; Yana S. Kovacheva; Stephen E. Halford; Gijs J. L. Wuite

Many proteins that interact with DNA perform or enhance their specific functions by binding simultaneously to multiple target sites, thereby inducing a loop in the DNA. The dynamics and energies involved in this loop formation influence the reaction mechanism. Tethered particle motion has proven a powerful technique to study in real time protein-induced DNA looping dynamics while minimally perturbing the DNA–protein interactions. In addition, it permits many single-molecule experiments to be performed in parallel. Using as a model system the tetrameric Type II restriction enzyme SfiI, that binds two copies of its recognition site, we show here that we can determine the DNA–protein association and dissociation steps as well as the actual process of protein-induced loop capture and release on a single DNA molecule. The result of these experiments is a quantitative reaction scheme for DNA looping by SfiI that is rigorously compared to detailed biochemical studies of SfiI looping dynamics. We also present novel methods for data analysis and compare and discuss these with existing methods. The general applicability of the introduced techniques will further enhance tethered particle motion as a tool to follow DNA–protein dynamics in real time.


Nucleic Acids Research | 2008

Dynamics and consequences of DNA looping by the FokI restriction endonuclease

Lucy E. Catto; Stuart R.W. Bellamy; Susan E. Retter; Stephen E. Halford

Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reaction pathway for FokI on a supercoiled DNA with two sites was dissected by fast kinetics to reveal, in turn: the initial binding of a protein monomer to each site; the protein–protein association to form the dimer, trapping the loop; the subsequent phosphodiester hydrolysis step. The DNA motion that juxtaposes the sites ought on the basis of Brownian dynamics to take ∼2 ms, but loop capture by FokI took 230 ms. Hence, DNA looping by FokI is rate limited by protein association rather than DNA dynamics. The FokI endonuclease also illustrated activation by looping: it cut looped DNA 400 times faster than unlooped DNA.


Nucleic Acids Research | 2009

Differences between Ca2+ and Mg2+ in DNA binding and release by the SfiI restriction endonuclease: implications for DNA looping

Stuart R.W. Bellamy; Yana S. Kovacheva; Ishan Haji Zulkipli; Stephen E. Halford

Many enzymes acting on DNA require Mg2+ ions not only for catalysis but also to bind DNA. Binding studies often employ Ca2+ as a substitute for Mg2+, to promote DNA binding whilst disallowing catalysis. The SfiI endonuclease requires divalent metal ions to bind DNA but, in contrast to many systems where Ca2+ mimics Mg2+, Ca2+ causes SfiI to bind DNA almost irreversibly. Equilibrium binding by wild-type SfiI cannot be conducted with Mg2+ present as the DNA is cleaved so, to study the effect of Mg2+ on DNA binding, two catalytically-inactive mutants were constructed. The mutants bound DNA in the presence of either Ca2+ or Mg2+ but, unlike wild-type SfiI with Ca2+, the binding was reversible. With both mutants, dissociation was slow with Ca2+ but was in one case much faster with Mg2+. Hence, Ca2+ can affect DNA binding differently from Mg2+. Moreover, SfiI is an archetypal system for DNA looping; on DNA with two recognition sites, it binds to both sites and loops out the intervening DNA. While the dynamics of looping cannot be measured with wild-type SfiI and Ca2+, it becomes accessible with the mutant and Mg2+.


Biophysical Journal | 2014

FKBP12.6 Activates RyR1: Investigating the Amino Acid Residues Critical for Channel Modulation

Elisa Venturi; Elena Galfrè; Fiona O'Brien; Samantha J. Pitt; Stuart R.W. Bellamy; Richard B. Sessions; Rebecca Sitsapesan

We have previously shown that FKBP12 associates with RyR2 in cardiac muscle and that it modulates RyR2 function differently to FKBP12.6. We now investigate how these proteins affect the single-channel behavior of RyR1 derived from rabbit skeletal muscle. Our results show that FKBP12.6 activates and FKBP12 inhibits RyR1. It is likely that both proteins compete for the same binding sites on RyR1 because channels that are preactivated by FKBP12.6 cannot be subsequently inhibited by FKBP12. We produced a mutant FKBP12 molecule (FKBP12E31Q/D32N/W59F) where the residues Glu31, Asp32, and Trp59 were converted to the corresponding residues in FKBP12.6. With respect to the functional regulation of RyR1 and RyR2, the FKBP12E31Q/D32N/W59F mutant lost all ability to behave like FKBP12 and instead behaved like FKBP12.6. FKBP12E31Q/D32N/W59F activated RyR1 but was not capable of activating RyR2. In conclusion, FKBP12.6 activates RyR1, whereas FKBP12 activates RyR2 and this selective activator phenotype is determined within the amino acid residues Glu31, Asp32, and Trp59 in FKBP12 and Gln31, Asn32, and Phe59 in FKBP12.6. The opposing but different effects of FKBP12 and FKBP12.6 on RyR1 and RyR2 channel gating provide scope for diversity of regulation in different tissues.


Journal of Molecular Biology | 2008

Fidelity of DNA Sequence Recognition by the SfiI Restriction Endonuclease Is Determined by Communications between Its Two DNA-Binding Sites

Stuart R.W. Bellamy; Petros Mina; Susan E. Retter; Stephen E. Halford

The SfiI restriction endonuclease is a tetramer in which two subunits form a dimeric unit that contains one DNA binding cleft and the other two subunits contain a second cleft on the opposite side of the protein. Full activity requires both clefts to be filled with its recognition sequence: SfiI has low activity when bound to one site. The ability of SfiI to cleave non-cognate sites, one base pair different from the true site, was initially tested on substrates that lacked specific sites but which contained either one or multiple non-cognate sites. No cleavage of the DNA with one non-cognate site was detected, while a small fraction of the DNA with multiple sites was nicked. The alternative sequences were, however, cleaved in both strands, albeit at low levels, when the DNA also carried either a recognition site for SfiI or the termini generated by SfiI. Further tests employed a mutant of SfiI, altered at the dimer interface, which was known to be more active than wild-type SfiI when bound to a single site. This mutant similarly failed to cleave DNA with one non-cognate site, but cleaved the substrates with multiple non-cognate sites more readily than did the native enzyme. To cleave additional sites, SfiI thus needs to interact concurrently with either two non-cognate sites or one non-cognate and one cognate site (or the termini thereof), yet this arrangement is still restrained from cleaving the alternative site unless the communication pathway between the two DNA-binding clefts is disrupted.


Nucleic Acids Research | 2004

One recognition sequence, seven restriction enzymes, five reaction mechanisms

Darren M. Gowers; Stuart R.W. Bellamy; Stephen E. Halford


Journal of Molecular Biology | 2005

Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI.

Stuart R.W. Bellamy; Susan E. Milsom; David J. Scott; Lucy E. Daniels; Geoffrey G. Wilson; Stephen E. Halford


Journal of Molecular Biology | 2007

A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease.

Stuart R.W. Bellamy; Susan E. Milsom; Yana S. Kovacheva; Richard B. Sessions; Stephen E. Halford


Journal of Molecular Biology | 2006

The asymmetric ATPase cycle of the thermosome : Elucidation of the binding, hydrolysis and product-release steps

Maria Giulia Bigotti; Stuart R.W. Bellamy; Anthony R. Clarke

Collaboration


Dive into the Stuart R.W. Bellamy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge