Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart S. Martin is active.

Publication


Featured researches published by Stuart S. Martin.


The FASEB Journal | 2012

Physical confinement alters tumor cell adhesion and migration phenotypes

Eric M. Balzer; Ziqiu Tong; Colin Paul; Wei Chien Hung; Kimberly M. Stroka; Amanda E. Boggs; Stuart S. Martin; Konstantinos Konstantopoulos

Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin‐mediated adhesion, and myosin‐mediated contraction; however, this mechanism may not accurately describe movement in 3‐dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA‐MB‐231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1‐integrins do not impair migration through 3‐μm‐wide channels (confinement), even though these treatments repress motility in 50‐μm‐wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F‐actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live‐cell EB1‐GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion‐contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.—Balzer, E. M., Tong, Z., Paul, C. D., Hung, W.‐C., Stroka, K. M., Boggs, A. E., Martin, S. S., Konstantopoulos, K. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045–4056 (2012). www.fasebj.org


Molecular and Cellular Biology | 2001

Human MCF10A mammary epithelial cells undergo apoptosis following actin depolymerization that is independent of attachment and rescued by Bcl-2.

Stuart S. Martin; Philip Leder

ABSTRACT Many tumor cells are impaired in adhesion-regulated apoptosis, which contributes to their metastatic potential. However, suppression of this apoptotic pathway in untransformed cells is not mediated only by adhesion to the extracellular matrix but also through the resulting ability to spread and adopt a distinct morphology. Since cell spreading is dependent on the integrity of the actin microfilament cytoskeleton, we sought to determine if actin depolymerization was sufficient to induce apoptosis, even in the presence of continuous attachment. For this study, we used a human mammary epithelial cell line (MCF10A), which is immortalized but remains adhesion dependent for survival. Treatment of MCF10A cells with latrunculin-A (LA), an inhibitor of actin polymerization, rapidly led to disruption of the actin cytoskeleton and caused cell rounding but preserved attachment. Initiation of apoptosis in LA-treated MCF10A cells was detected by mitochondrial localization of the Bax apoptotic protein, which was prevented by overexpression of Bcl-2. DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage in LA-treated MCF10A cells indicated progression to the execution phase of apoptosis. The MDA-MB-453 cell line, which was derived from a metastatic human mammary tumor, was resistant to PARP cleavage and loss of viability in response to actin depolymerization. Stable overexpression of Bcl-2 in the untransformed MCF10A cells was able to recapitulate the resistance to apoptosis found in the tumor cell line. We demonstrate that inhibition of actin polymerization is sufficient to stimulate apoptosis in attached MCF10A cells, and we present a novel role for Bcl-2 in cell death induced by direct disruption of the actin cytoskeleton.


Cancer Research | 2008

Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells

Rebecca A. Whipple; Eric M. Balzer; Edward H. Cho; Michael A. Matrone; Jennifer R. Yoon; Stuart S. Martin

Solid tumor metastasis often involves detachment of epithelial carcinoma cells into the vasculature or lymphatics. However, most studies of cytoskeletal rearrangement in solid tumors focus on attached cells. In this study, we report for the first time that human breast tumor cells produce unique tubulin-based protrusions when detached from extracellular matrix. Tumor cell lines of high metastatic potential show significantly increased extension and frequency of microtubule protrusions, which we have termed tubulin microtentacles. Our previous studies in nontumorigenic mammary epithelial cells showed that such detachment-induced microtentacles are enriched in detyrosinated alpha-tubulin. However, amounts of detyrosinated tubulin were similar in breast tumor cell lines despite varying microtentacle levels. Because detyrosinated alpha-tubulin associates strongly with intermediate filament proteins, we examined the contribution of cytokeratin and vimentin filaments to tumor cell microtentacles. Increased microtentacle frequency and extension correlated strongly with loss of cytokeratin expression and up-regulation of vimentin, as is often observed during tumor progression. Moreover, vimentin filaments coaligned with microtentacles, whereas cytokeratin did not. Disruption of vimentin with PP1/PP2A-specific inhibitors significantly reduced microtentacles and inhibited cell reattachment to extracellular matrix. Furthermore, expression of a dominant-negative vimentin mutant disrupted endogenous vimentin filaments and significantly reduced microtentacles, providing specific genetic evidence that vimentin supports microtentacles. Our results define a novel model in which coordination of vimentin and detyrosinated microtubules provides structural support for the extensive microtentacles observed in detached tumor cells and a possible mechanism to promote successful metastatic spread.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Circulating giant macrophages as a potential biomarker of solid tumors

Daniel L. Adams; Stuart S. Martin; R. Katherine Alpaugh; Monica Charpentier; Susan Tsai; Raymond C. Bergan; Irene M. Ogden; William J. Catalona; Saranya Chumsri; Cha Mei Tang; Massimo Cristofanilli

Significance Using microfiltration as a liquid biopsy for the recovery of circulating tumor cells (CTCs) has revealed an accompanying macrophage subset that we use as a highly sensitive biomarker for solid tumors. We supply evidence that this circulating giant cell is a subset of disseminated tumor-associated macrophages capable of binding CTCs in peripheral blood of cancer patients. The presence of this cell expands the concept of using a liquid biopsy not only to indicate cancer presence but also to track cancer treatment effects sequentially using other circulating blood cells. Further, we supply observational evidence hypothesizing a metastasis pathway model in which CTCs migrate with pro-angiogenic macrophages, linking cancer cell intravasation, migration, and extravasation and the formation of metastatic microenvironments. Tumor-associated macrophages (TAMs) derived from primary tumors are believed to facilitate circulating tumor cell (CTC) seeding of distant metastases, but the mechanisms of these processes are poorly understood. Although many studies have focused on the migration of CTCs, less attention has been given to TAMs that, like CTCs, derive from tumor sites. Using precision microfilters under low-flow conditions, we isolated circulating cancer-associated macrophage-like cells (CAMLs) from the peripheral blood of patients with breast, pancreatic, or prostate cancer. CAMLs, which are not found in healthy individuals, were found to express epithelial, monocytic, and endothelial protein markers and were observed bound to CTCs in circulation. These data support the hypothesis that disseminated TAMs can be used as a biomarker of advanced disease and suggest that they have a participatory role in tumor cell migration.


Cytometry Part A | 2015

Cytometric characterization of Circulating Tumor Cells Captured by microfiltration and their correlation to the cellsearch® CTC test

Daniel L. Adams; Steingrimur Stefansson; Christian C. Haudenschild; Stuart S. Martin; Monica Charpentier; Saranya Chumsri; Massimo Cristofanilli; Cha Mei Tang; R. Katherine Alpaugh

Recent studies reporting hundreds, to thousands, of circulating tumor cells (CTCs) in the blood of cancer patients have raised questions regarding the prevalence of CTCs, as enumerated by the CellSearch® CTC Test. Although CellSearch has been shown to consistently detect clinically relevant CTCs; the ability to only capture EpCAM positive cells has led to speculation that it captures limited subsets of CTCs. In contrast, alternative approaches to CTC isolation are often cited as capturing large numbers of CTCs from patient blood. Not surprisingly the number of cells isolated by alternative approaches show poor correlations when compared to CellSearch, even when accounting for EpCAM presence or absence. In an effort to address this discrepancy, we ran an exploratory method comparison study to characterize and compare the CTC subgroups captured from duplicate blood samples from 30 breast and prostate cancer patients using a microfiltration system (CellSieve™) and CellSearch. We then categorized the CellSieve Cytokeratin(CK)+/CD45−/DAPI+ cells into five morphologically distinct subpopulations for correlative analysis. Like other filtration techniques, CellSieve isolated greater numbers of CK+/CD45− cells than CellSearch. Furthermore, analysis showed low correlation between the total CK+/CD45− cells captured by these two assays, regardless of EpCAM presence. However, subgrouping of CK+/CD45−/DAPI+ cells based on distinct cytokeratin staining patterns and nuclear morphologies elucidated a subpopulation correlative to CellSearch. Using method comparison analyses, we identified a specific CTC morphology which is highly correlative between two distinct capture methods. These data suggests that although various morphologic CTCs with similar phenotypic expressions are present in the blood of cancer patients, the clinically relevant cells isolated by CellSearch can potentially be identified using non‐EpCAM dependent isolation.


Oncogene | 2004

A cytoskeleton-based functional genetic screen identifies Bcl-xL as an enhancer of metastasis, but not primary tumor growth

Stuart S. Martin; Alan G Ridgeway; Jan Pinkas; Yu Lu; Mauricio J. Reginato; Eugene Y. Koh; Montserrat V. Michelman; George Q. Daley; Joan S. Brugge; Philip Leder

Many mouse models of breast cancer form large primary tumors that rarely metastasize. Models with aggressive metastasis express oncoproteins that simultaneously affect growth and apoptosis pathways. To define the role of apoptotic resistance and to model a challenge faced by tumor cells during metastatic dissemination, we focused on apoptosis induced by cell shape change. Inhibiting actin polymerization with Latrunculin-A causes cell rounding and death within hours in nontumorigenic human 10A-Ras mammary epithelial cells. In contrast, MDA-MB-231 metastatic breast tumor cells resist LA-induced death, and survive for days despite cell rounding. Infecting 10A-Ras cells with a MDA-MB-231 retroviral expression library, and selecting with Latrunculin-A repeatedly identified Bcl-xL as a suppressor of cytoskeleton-dependent death. Although Bcl-xL enhances the spread of metastatic breast tumor cell lines, the distinct effects of apoptotic resistance on tumor growth in the mammary gland and during metastasis have not been compared directly. We find that Bcl-xL overexpression in mouse mammary epithelial cells does not induce primary tumor formation or enhance MEK-induced tumorigenesis within the mammary gland environment. However, it strongly enhances metastatic potential. These results with Bcl-xL provide novel evidence that isolated apoptotic resistance can increase metastatic potential, but remain overlooked by assays based on breast tumor growth.


Cancer Research | 2009

Deletion of PTEN Promotes Tumorigenic Signaling, Resistance to Anoikis, and Altered Response to Chemotherapeutic Agents in Human Mammary Epithelial Cells

Michele I. Vitolo; Michele B. Weiss; Marta Szmacinski; Khola Tahir; Todd Waldman; Ben Ho Park; Stuart S. Martin; David J. Weber; Kurtis E. Bachman

Many cancers, including breast cancer, harbor loss-of-function mutations in the catalytic domain of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) or have reduced PTEN expression through loss of heterozygosity and/or epigenetic silencing mechanisms. However, specific phenotypic effects of PTEN inactivation in human cancer cells remain poorly defined without a direct causal connection between the loss of PTEN function and the development or progression of cancer. To evaluate the biological and clinical relevance of reduced or deleted PTEN expression, a novel in vitro model system was generated using human somatic cell knockout technologies. Targeted homologous recombination allowed for a single and double allelic deletion, which resulted in reduced and deleted PTEN expression, respectively. We determined that heterozygous loss of PTEN in the nontumorigenic human mammary epithelial cell line MCF-10A was sufficient for activation of the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase pathways, whereas the homozygous absence of PTEN expression led to a further increased activation of both pathways. The deletion of PTEN was able to confer growth factor-independent proliferation, which was confirmed by the resistance of the PTEN(-/-) MCF-10A cells to small-molecule inhibitors of the epidermal growth factor receptor. However, neither heterozygous nor homozygous loss of PTEN expression was sufficient to promote anchorage-independent growth, but the loss of PTEN did confer apoptotic resistance to cell rounding and matrix detachment. Finally, MCF-10A cells with the reduction or loss of PTEN showed increased susceptibility to the chemotherapeutic drug doxorubicin but not paclitaxel.


Oncogene | 2010

Metastatic breast tumors express increased tau, which promotes microtentacle formation and the reattachment of detached breast tumor cells.

Michael A. Matrone; Rebecca A. Whipple; Keyata Thompson; Edward H. Cho; Michele I. Vitolo; Eric M. Balzer; Jennifer R. Yoon; Olga B. Ioffe; Kimberly C. Tuttle; Ming Tan; Stuart S. Martin

The cytoskeletal organization of detached and circulating tumor cells (CTCs) is currently not well defined and may provide potential targets for new therapies to limit metastatic tumor spread. In vivo, CTCs reattach in distant tissues by a mechanism that is tubulin-dependent and suppressed by polymerized actin. The cytoskeletal mechanisms that promote reattachment of CTCs match exactly with the mechanisms supporting tubulin microtentacles (McTN), which we have recently identified in detached breast tumor cells. In this study, we aimed to investigate how McTN formation is affected by the microtubule-associated protein, tau, which is expressed in a subset of chemotherapy-resistant breast cancers. We demonstrate that endogenous tau protein localizes to McTNs and is both necessary and sufficient to promote McTN extension in detached breast tumor cells. Tau-induced McTNs increase reattachment of suspended cells and retention of CTCs in lung capillaries. Analysis of patient-matched primary and metastatic tumors reveals that 52% possess tau expression in metastases and 26% display significantly increased tau expression over disease progression. Tau enrichment in metastatic tumors and the ability of tau to promote tumor cell reattachment through McTN formation support a model in which tau-induced microtubule stabilization provides a selective advantage during tumor metastasis.


Nature Communications | 2015

Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle

Jaclyn P. Kerr; Patrick Robison; Guoli Shi; Alexey I. Bogush; Aaron M. Kempema; Joseph K. Hexum; Natalia Becerra; Daniel A. Harki; Stuart S. Martin; Roberto Raiteri; Benjamin L. Prosser; Christopher W. Ward

In striated muscle, X-ROS is the mechanotransduction pathway by which mechanical stress transduced by the microtubule network elicits reactive oxygen species. X-ROS tunes Ca2+ signalling in healthy muscle, but in diseases such as Duchenne muscular dystrophy (DMD), microtubule alterations drive elevated X-ROS, disrupting Ca2+ homeostasis and impairing function. Here we show that detyrosination, a post-translational modification of α-tubulin, influences X-ROS signalling, contraction speed and cytoskeletal mechanics. In the mdx mouse model of DMD, the pharmacological reduction of detyrosination in vitro ablates aberrant X-ROS and Ca2+ signalling, and in vivo it protects against hallmarks of DMD, including workload-induced arrhythmias and contraction-induced injury in skeletal muscle. We conclude that detyrosinated microtubules increase cytoskeletal stiffness and mechanotransduction in striated muscle and that targeting this post-translational modification may have broad therapeutic potential in muscular dystrophies.


Cancer Research | 2014

Curcumin Targets Breast Cancer Stem–like Cells with Microtentacles That Persist in Mammospheres and Promote Reattachment

Monica Charpentier; Rebecca A. Whipple; Michele I. Vitolo; Amanda E. Boggs; Jana Slovic; Keyata Thompson; Lekhana Bhandary; Stuart S. Martin

Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the human mammary epithelial (HMLE) cell line presents increased McTNs compared with its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTNs in stem cell reattachment. Moreover, live-cell confocal microscopy showed that McTNs persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. Although exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTNs can mediate attachment and metastasis but might be targeted by curcumin as an antimetastatic strategy.

Collaboration


Dive into the Stuart S. Martin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cha-Mei Tang

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge