Stylianos Sygletos
Aston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stylianos Sygletos.
optical fiber communication conference | 2014
Ian Phillips; Mingming Tan; Marc Stephens; Mary Elizabeth McCarthy; Elias Giacoumidis; Stylianos Sygletos; Pawel Rosa; Simon Fabbri; Son Thai Le; Thavamaran Kanesan; Sergei K. Turitsyn; Nick Doran; Paul Harper; Andrew D. Ellis
We demonstrate that a combination of Raman laser based amplification and optical phase conjugation enables transmission beyond the nonlinear-Shannon limit. We show nonlinear compensation of 7×114Gbit/s DP-QPSK channels, increasing system reach by 30%.
optical fiber communication conference | 2010
Ruwan Weerasuriya; Stylianos Sygletos; Selwan K. Ibrahim; Richard Phelan; John O'Carroll; Brian Kelly; J. O'Gorman; Andrew D. Ellis
We report a novel system for simultaneous carrier recovery and frequency symmetric signals generation from a NRZ-BPSK input by exploiting FWM in HNLF for phase sensitive amplification.
Optics Express | 2015
Andrew D. Ellis; Mary Elizabeth McCarthy; Mohammad Ahmad Zaki Al-Khateeb; Stylianos Sygletos
We extend the theory of parametric noise amplification to the case of transmission systems employing multiple optical phase conjugators, demonstrating that the excess noise due to this process may be reduced in direct proportion to the number of phase conjugation devices employed. We further identify that the optimum noise suppression is achieved for an odd number of phase conjugators, and that the noise may be further suppressed by up to 3dB by partial digital back propagation (or fractional spans at the ends of the links).
Journal of Lightwave Technology | 2016
Andrew D. Ellis; Mingming Tan; Asif Iqbal; Mohammad Ahmad Zaki Al-Khateeb; Vladimir Gordienko; Gabriel Saavedra Mondaca; Simon Fabbri; Marc Stephens; Mary Elizabeth McCarthy; Andreas Perentos; Ian Phillips; Domanic Lavery; Gabriele Liga; Robert Maher; Paul Harper; Nick Doran; Sergei K. Turitsyn; Stylianos Sygletos; Polina Bayvel
In this paper, we experimentally demonstrate the benefit of polarization insensitive dual-band optical phase conjugation for up to ten 400 Gb/s optical super-channels using a Raman amplified transmission link with a realistic span length of 75 km. We demonstrate that the resultant increase in transmission distance may be predicted analytically if the detrimental impacts of power asymmetry and polarization mode dispersion are taken into account.
IEEE Photonics Technology Letters | 2011
Paola Frascella; Stylianos Sygletos; Fatima C. Garcia Gunning; Ruwan Weerasuriya; Lars Grüner-Nielsen; Richard Phelan; J. O'Gorman; Andrew D. Ellis
We demonstrate, for the first time to our knowledge, regeneration of a 42.66-Gb/s differential phase-shift keyed signal using a dual-pump nondegenerate four-wave-mixing-based fiber-optic parametric amplifier. The regenerative performance of the subsystem is characterized in terms of bit-error rate against narrowband and wideband introduced noise. While a strong receiver sensitivity improvement, up to 20 dB, is noticed against narrowband noise, against quasi-random (wideband) noise we observe a regeneration of 2.7 dB.
optical fiber communication conference | 2010
Francesca Parmigiani; Radan Slavík; Joseph Kakande; Carl Lundström; Martin Sjödin; Peter A. Andrekson; Ruwan Weerasuriya; Stylianos Sygletos; Andrew D. Ellis; Lars Grüner-Nielsen; Dan Jakobsen; Søren Herstrøm; Richard Phelan; J. O'Gorman; Adonis Bogris; Dimitris Syvridis; Sonali Dasgupta; Periklis Petropoulos; David J. Richardson
We present a black-box four wave mixing based bit-rate-flexible phase sensitive amplifier and use it in the first demonstration of 40 Gbit/s DPSK phase regeneration.
Optics Express | 2011
Selwan K. Ibrahim; Stylianos Sygletos; Ruwan Weerasuriya; Andrew D. Ellis
We report a novel real-time homodyne coherent receiver based on a DPSK optical-electrical-optical (OEO) regenerator used to extract a carrier from carrier-less phase modulated signals based on feed-forward based modulation stripping. The performance of this non-DSP based coherent receiver was evaluated for 10.66 Gbit/s BPSK signals. Self-homodyne coherent detection and homodyne detection with an injection-locked local oscillator laser was demonstrated. The performance was evaluated by measuring the electrical signal-to-noise (SNR) and recording the eye diagrams. Using injection-locking for the LO improves the performance and enables homodyne detection with optical injection-locking to operate with carrier-less BPSK signals without the need for polarization multiplexed pilot-tones.
Optics Express | 2013
Andrew D. Ellis; Naoise MacSuibhne; F. C. Garcia Gunning; Stylianos Sygletos
We develop an analytical theory which allows us to identify the information spectral density limits of multimode optical fiber transmission systems. Our approach takes into account the Kerr-effect induced interactions of the propagating spatial modes and derives closed-form expressions for the spectral density of the corresponding nonlinear distortion. Experimental characterization results have confirmed the accuracy of the proposed models. Application of our theory in different FMF transmission scenarios has predicted a ~10% variation in total system throughput due to changes associated with inter-mode nonlinear interactions, in agreement with an observed 3dB increase in nonlinear noise power spectral density for a graded index four LP mode fiber.
Optics Express | 2014
Marc Stephens; Mingming Tan; Ian Phillips; Stylianos Sygletos; Paul Harper; Nick Doran
Optical phase conjugation (OPC) of a polarization-multiplexed comb of 10x114Gb/s DP-QPSK signals has been demonstrated for the first time, occupying a spectral bandwidth of >1 THz (~9 nm). The nonlinear element employed for the OPC was highly nonlinear fiber (HNLF) optimized for the suppression of stimulated Brillouin scattering (SBS) and configured in a bi-directional loop offering polarization diversity. Pump power (each way about the loop) and input signal power to the OPC subsystem were optimized at 29.7 dBm and + 3 dBm respectively producing a Q(2) penalty of ≤ 0.9 dB over all conjugate wavelengths, polarizations and output OSNR (up to 20 dB).
Journal of Lightwave Technology | 2010
Stylianos Sygletos; R. Bonk; T. Vallaitis; A. Marculescu; P. Vorreau; J. Li; Romain Brenot; F. Lelarge; Guang-Hua Duan; Wolfgang Freude; Jürg Leuthold
The nonlinear operation regimes of quantum-dot semiconductor optical amplifiers (QD-SOAs) are investigated and the ideal filter providing the best all-optical wavelength conversion efficiency is derived theoretically. Results are confirmed by experiments with Q2-factors amounting to 16 dB.