Su-Ching Kuo
Chia Nan University of Pharmacy and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Su-Ching Kuo.
Science of The Total Environment | 2015
Ying I. Tsai; Khajornsak Sopajaree; Su-Ching Kuo; Sung-Po Yu
The Mid-Autumn Festival (MAF), or Moon Festival, is a harvest festival in Taiwan, celebrated by families across the island with evening barbecues outside. This study investigated the potential impact of these activities on the air quality in Tainan, a city in southern Taiwan. Fine particulate matter (PM2.5) was examined in the period leading up to the MAF (pre-MAF), during the Festival (MAF), after the Festival (post-MAF), and in the period after this (a period of moderate air quality: MAQ). Gaseous pollutants in PM2.5 were, from highest to lowest mean concentration, NH3, SO2, HCl, HNO3, HNO2, and oxalic acid, while inorganic salts were mainly in the form of the photochemical products SO4(2-), NH4(+), and NO3(-). These inorganic salts accounted for 37.6%-44.5% of the PM2.5 mass concentration, while a further 26.3%-42.8% of the PM2.5 mass was total carbon (TC). TC was mostly composed of organic carbon (OC) produced by photochemical reactions. Of this, 9.8%-14.9% was carboxylates, of which oxalate was the most abundant compound, accounting for 22.8%-31.9% of carboxylates. The presence of phthalates in the PM2.5 indicated emissions from the plastics industry. Although a noticeable amount of aerosol was produced by festival activities and burning of softwood and hardwood, onshore air currents during the festival prevented potential high aerosol loading. During the moderate air quality period following post-MAF, the concentration of total carbohydrates was 1.44-2.64 times the amount during the festival. Levoglucosan and myo-inositol accounted for 81.7%-89.6% of the total carbohydrate concentration. The average Levo/Manno ratio was 18.64 ± 5.24. The concentration of levoglucosan was closely related to that of PO4(3-), erythritol, and galactose. Backward trajectories indicated that biomass burning in China affected the air quality of Tainan City.
Analytica Chimica Acta | 2009
Su-Ching Kuo; Shien-Kai Chuang; Ho-Yang Lin; Lai-Hao Wang
The purpose of this study was to develop and test a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) method, a fast and non-destructive method without extraction, and compare it with the standard gas chromatography (GC) method currently used. A micro-orifice uniform deposit impactor (MOUDI) was used to sample all the size distributions of the aerosol particles of essential oils to investigate the relation between size distributions and the indoor concentration distributions of ylang essential oils. Correlation coefficients for DRIFTS and GC were 0.9904, 0.9910, 0.9913, and 0.9983 for eugenol, isoeugenol, methyl ether, and eugenyl acetate, respectively. The results showed that the concentrations of the four eugenol derivatives of smoke were approximately three times higher than those of mist. Additionally, the major size distributions of aerosol were 0.19 microm and 1.8 microm for the smoke and mist methods, respectively. Because these two methods produce similar results, DRIFTS is a practical method for assessing these fragrances in aerosols.
Science of The Total Environment | 2017
Su-Ching Kuo; Ying I. Tsai
This study investigated allergenic terpenol compounds in incense powder and smoke. The powder of two Thai brands contained higher concentrations of terpenols up to 6.15 times higher than those of two Taiwanese brands. Consequently, Thai incense makers face a higher potential risk of contact dermatitis than Taiwanese incense makers do. d-Limonene was the primary terpenol compound in the powder of Thai B (64.0%) and Thai Y (31.5%), sold in Thailand. By contrast, anisyl alcohol was the primary terpenol compound in the powder of LST (40.3%) and SC (37.7%), sold in Taiwan. After the four brands of incense were ignited, their mean PM2.5 emission factor was 18.02±6.20mgg-1 incense. The PM2.5 mass emission factors of the Taiwanese brands were far higher than those of the Thai brands, and so were the PM2.5 terpenol emission factors, showing that the smokes of the Taiwanese incense were potentially more allergenic than those of the Thai incense. Geraniol, the most allergenic terpenol compound, was 2.8%-10.7% of total terpenol compounds in the powder of the four brands, yet was the main contributor to PM2.5, constituting 66.3%-83.5% of terpenol compounds in the smokes of the four brands. Furthermore, geraniol exhibited an IP ratio, defined as the incense/powder (IP) ratio of terpenol-related species, >1 in all four brands, and >5 in the Taiwanese brands, suggesting a greater health risk with the smoke from the Taiwanese incense. The IP ratios of other terpenol species were all <1, indicating decomposition through combustion. Additionally, the light/darkroom ratios of the terpenol species were >1, meaning that the generation of PM2.5 terpenol compounds was potentially enhanced by indoor lighting.
Atmospheric Environment | 2003
Su-Ching Kuo; Yi-Hsuan Lin
Atmospheric Environment | 2005
Su-Ching Kuo
Atmospheric Environment | 2007
Li-Ying Hsieh; Su-Ching Kuo; Chien-Lung Chen; Ying I. Tsai
Atmospheric Environment | 2009
Li-Ying Hsieh; Su-Ching Kuo; Chien-Lung Chen
Atmospheric Environment | 2013
Khajornsak Sopajaree; Auranee Chotruksa; Hsin-Ching Wu; Su-Ching Kuo
Atmospheric Environment | 2007
Su-Ching Kuo; Li-Ying Hsieh; Cheng-Hsien Tsai
Atmospheric Environment | 2013
Su-Ching Kuo