Su-Chiung Fang
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Su-Chiung Fang.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Jun-Zhi Wei; Kristina Hale; Lynn K. Carta; Edward Platzer; Cynthie Wong; Su-Chiung Fang; Raffi V. Aroian
Bacillus thuringiensis (Bt) crystal proteins are pore-forming toxins used as insecticides around the world. Previously, the extent to which these proteins might also target the invertebrate phylum Nematoda has been mostly ignored. We have expressed seven different crystal toxin proteins from two largely unstudied Bt crystal protein subfamilies. By assaying their toxicity on diverse free-living nematode species, we demonstrate that four of these crystal proteins are active against multiple nematode species and that each nematode species tested is susceptible to at least one toxin. We also demonstrate that a rat intestinal nematode is susceptible to some of the nematicidal crystal proteins, indicating these may hold promise in controlling vertebrate-parasitic nematodes. Toxicity in nematodes correlates with damage to the intestine, consistent with the mechanism of crystal toxin action in insects. Structure–function analyses indicate that one novel nematicidal crystal protein can be engineered to a small 43-kDa active core. These data demonstrate that at least two Bt crystal protein subfamilies contain nematicidal toxins.
The Plant Cell | 2000
Donna E. Fernandez; Sharyn E. Perry; Sara E. Patterson; Anthony B. Bleecker; Su-Chiung Fang
AGL15 (AGAMOUS-like 15), a member of the MADS domain family of regulatory factors, accumulates preferentially throughout the early stages of the plant life cycle. In this study, we investigated the expression pattern and possible roles of postembryonic accumulation of AGL15. Using a combination of reporter genes, RNA gel blot analysis, and immunochemistry, we found that the AGL15 protein accumulates transiently in the shoot apex in young Arabidopsis and Brassica seedlings and that promoter activity is associated with the shoot apex and the base of leaf petioles throughout the vegetative phase. During the reproductive phase, AGL15 accumulates transiently in floral buds. When AGL15 was expressed in Arabidopsis under the control of a strong constitutive promoter, we noted a striking increase in the longevity of the sepals and petals as well as delays in a selected set of age-dependent developmental processes, including the transition to flowering and fruit maturation. Although ethylene has been implicated in many of these same processes, the effects of AGL15 could be clearly distinguished from the effects of the ethylene resistant1-1 mutation, which confers dominant insensitivity to ethylene. By comparing the petal breakstrength (the force needed to remove petals) for flowers of different ages, we determined that ectopic AGL15 had a novel effect: the breakstrength of petals initially declined, as occurs in the wild type, but was then maintained at an intermediate value over a prolonged period. Abscission-associated gene expression and structural changes were also altered in the presence of ectopic AGL15.
Plant Molecular Biology | 1996
Su-May Yu; Yi-Ching Lee; Su-Chiung Fang; Ming-Tsair Chan; Soon-Far Hwa; Li-Fei Liu
The molecular mechanisms that initiate and control the metabolic activities of seed germination are largely unknown. Sugars may play important roles in regulating such metabolic activities in addition to providing an essential carbon source for the growth of young seedlings and maintaining turgor pressure for the expansion of tissues during germination. To test this hypothesis, we investigated the physiological role of sugars in the regulation of α-amylase gene expression and carbohydrate metabolism in embryo and endosperm of germinating rice seeds. RNA gel blot analysis revealed that in the embryo and aleurone cells, expression of four α-amylase genes was differentially regulated by sugars via mechanisms beyond the well-known hormonal control mechanism. In the aleurone cells, expression of these α-amylase genes was regulated by gibberellins produced in the embryo and by osmotically active sugars. In the embryo, expression of two α-amylase genes and production of gibberellins were transient, and were probably induced by depletion of sugars in the embryo upon imbibition, and suppressed by sugars influx from the endosperm as germination proceeded. The differential expression of the four α-amylase genes in the embryo and aleurone cells was probably due to their markedly different sensitivities to changes in tissue sugar levels. Our study supports a model in which sugars regulate the expression of α-amylase genes in a tissue-specific manner: via a feedback control mechanism in the embryo and via an osmotic control mechanism in the aleurone cells. An interactive loop among sugars, gibberellins, and α-amylase genes in the germinating cereal grain is proposed.
PLOS Genetics | 2005
Su-Chiung Fang; Chris de los Reyes; James G. Umen
Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.
Plant Physiology | 2002
Su-Chiung Fang; Donna E. Fernandez
We have examined the effect of regulated overexpression of AGL15, a member of the MADS domain family of regulatory factors, on reproductive tissues. Using molecular and physiological markers, we show that constitutive overexpression of AGL15 in Arabidopsis leads to delay and down-regulation of senescence programs in perianth organs and developing fruits and alters the process of seed desiccation. Through genetic crosses, we show that the rate of water loss in the maturing seeds is dictated by the genetic composition and physiological state of the maternal tissue, rather than the embryo. To define the developmental time and/or place when senescence programs are most affected by elevated AGL15 levels, we expressed AGL15 under the control of various promoters. Expression during senescence or in abscission zone cells did not produce delays in floral organ senescence or abscission. Using a glucocorticoid-inducible expression system, we show that an increase in AGL15 levels around the time of flower opening is necessary to delay senescence and increase floral organ longevity.
The Plant Cell | 2010
Bradley J.S.C. Olson; Michael Oberholzer; Yubing Li; James M. Zones; Harjivan S. Kohli; Katerina Bisova; Su-Chiung Fang; Jill Meisenhelder; Tony Hunter; James G. Umen
The retinoblastoma (RB) pathway is a conserved eukaryotic cell cycle regulator that is thought to control cell cycle progression through periodic dissociation of the repressor protein, RB, from the activator proteins E2F and DP. This study shows that in the unicellular alga Chlamydomonas, the cell cycle is regulated by a constitutively chromatin-bound RB-E2F-DP ternary complex whose subunits do not undergo periodic dissociation. We examined the cell cycle dynamics of the retinoblastoma (RB) protein complex in the unicellular alga Chlamydomonas reinhardtii that has single homologs for each subunit—RB, E2F, and DP. We found that Chlamydomonas RB (encoded by MAT3) is a cell cycle–regulated phosphoprotein, that E2F1-DP1 can bind to a consensus E2F site, and that all three proteins interact in vivo to form a complex that can be quantitatively immunopurified. Yeast two-hybrid assays revealed the formation of a ternary complex between MAT3, DP1, and E2F1 that requires a C-terminal motif in E2F1 analogous to the RB binding domain of plant and animal E2Fs. We examined the abundance of MAT3/RB and E2F1-DP1 in highly synchronous cultures and found that they are synthesized and remain stably associated throughout the cell cycle with no detectable fraction of free E2F1-DP1. Consistent with their stable association, MAT3/RB and DP1 are constitutively nuclear, and MAT3/RB does not require DP1-E2F1 for nuclear localization. In the nucleus, MAT3/RB remains bound to chromatin throughout the cell cycle, and its chromatin binding is mediated through E2F1-DP1. Together, our data show that E2F-DP complexes can regulate the cell cycle without dissociation of their RB-related subunit and that other changes may be sufficient to convert RB-E2F-DP from a cell cycle repressor to an activator.
Genetics | 2008
Su-Chiung Fang; James G. Umen
The retinoblastoma (RB) protein is a eukaryotic tumor suppressor and negative cell-cycle regulator. Chlamydomonas reinhardtii cells that lack the RB homolog MAT3 show loss of size checkpoint control and deregulated cell-cycle progression leading to the production of tiny cells. We carried out an insertional mutagenesis screen to isolate bypass suppressors of mat3 (smt mutants) that reverted the mat3 cell-size defect. Previously we reported that the loci encoding Chlamydomonas homologs of E2F and DP were frequently disrupted in this screen, indicating that the architecture of the canonical RB pathway is conserved in Chlamydomonas with MAT3/RB acting as a negative regulator upstream of E2F/DP. Here, we describe four novel smt mutants that moderately suppressed the cell-size checkpoint and cell-cycle phenotypes of mat3. As single mutants, three of the smt strains displayed no obvious phenotypes, and one had a slightly small phenotype. Strikingly, several smt double-mutant combinations synergized to cause enhanced suppression of mat3 and even to cause a large-cell phenotype that is comparable to that caused by loss of DP1. Molecular characterization of one smt mutant revealed that suppression is due to a defect in a gene encoding a putative small ubiquitin-like modifier (SUMO) peptidase. Our results reveal a complex genetic network that lies downstream of MAT3/RB and implicate protein sumoylation as an important step for cell-cycle progression in cells that are missing MAT3/RB.
Plant Molecular Biology | 2014
Hsiang-Yin Lin; Jhun-Chen Chen; Miao-Ju Wei; Yi-Chen Lien; Huang-Hsien Li; Swee-Suak Ko; Zin-Huang Liu; Su-Chiung Fang
Abstract Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.
Plant Physiology | 2016
Su-Chiung Fang; Jhun-Chen Chen; Miao-Ju Wei
Protocorm-like body development does not utilize the somatic embryogenesis program in Phalaenopsis aphrodite. The distinct reproductive program of orchids provides a unique evolutionary model with pollination-triggered ovule development and megasporogenesis, a modified embryogenesis program resulting in seeds with immature embryos, and mycorrhiza-induced seed germination. However, the molecular mechanisms that have evolved to establish these unparalleled developmental programs are largely unclear. Here, we conducted comparative studies of genome-wide gene expression of various reproductive tissues and captured the molecular events associated with distinct reproductive programs in Phalaenopsis aphrodite. Importantly, our data provide evidence to demonstrate that protocorm-like body (PLB) regeneration (the clonal regeneration practice used in the orchid industry) does not follow the embryogenesis program. Instead, we propose that SHOOT MERISTEMLESS, a class I KNOTTED-LIKE HOMEOBOX gene, is likely to play a role in PLB regeneration. Our studies challenge the current understanding of the embryonic identity of PLBs. Taken together, the data obtained establish a fundamental framework for orchid reproductive development and provide a valuable new resource to enable the prediction of gene regulatory networks that is required for specialized developmental programs of orchid species.
Plant Signaling & Behavior | 2016
Jhun-Chen Chen; Miao-Ju Wei; Su-Chiung Fang
ABSTRACT One of the distinct reproductive programs in orchid species is pollination-triggered ovule development and megasporogenesis. During sexual reproduction, fertilization occurs days to months after pollination. The molecular mechanisms evolved to carry out this strategic reproductive program remain unclear. In the August issue of Plant Physiology1, we report comprehensive studies of comparative genome-wide gene expression in various reproductive tissues and the molecular events associated with developmental transitions unique to sexual reproduction of Phalaenopsis aphrodite. Transcriptional factors and signaling components whose expression is specifically enriched in interior ovary tissues when fertilization occurs and embryos start to develop have been identified. Here, we report verification of additional fertilization-associated genes, DOMAINS REARRANGED METHYLTRANSFERASE 1 (PaDRM1), CHROMOMETHYLTRANSFERASE 1 (PaCMT1), SU(VAR)3-9 RELATED PROTEIN 1 (PaSUVR1), INDOLE-3-ACETIC ACID inducible 30-like 1 (PaIAA30L1), and ETHYLENE INSENSITIVE 3-like 1 (PaEIN3L1), and discuss their potential roles in gametophyte development, epigenetic reprogramming, and hormone regulation during fertilization and establishment of embryo development in Phalaenopsis orchids.