Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Su Jung Park is active.

Publication


Featured researches published by Su Jung Park.


Blood | 2009

P21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics

Jayme D. Allen; Zahara M. Jaffer; Su Jung Park; Sarah Burgin; Clemens Hofmann; Mary Ann Sells; Shi Chen; Ethel Derr-Yellin; Elizabeth G. Michels; Andrew McDaniel; Waylan K. Bessler; David A. Ingram; Simon J. Atkinson; Jeffrey B. Travers; Jonathan Chernoff; D. Wade Clapp

Mast cells are key participants in allergic diseases via activation of high-affinity IgE receptors (FcepsilonRI) resulting in release of proinflammatory mediators. The biochemical pathways linking IgE activation to calcium influx and cytoskeletal changes required for intracellular granule release are incompletely understood. We demonstrate, genetically, that Pak1 is required for this process. In a passive cutaneous anaphylaxis experiment, W(sh)/W(sh) mast cell-deficient mice locally reconstituted with Pak1(-/-) bone marrow-derived mast cells (BMMCs) experienced strikingly decreased allergen-induced vascular permeability compared with controls. Consistent with the in vivo phenotype, Pak1(-/-) BMMCs exhibited a reduction in FcepsilonRI-induced degranulation. Further, Pak1(-/-) BMMCs demonstrated diminished calcium mobilization and altered depolymerization of cortical filamentous actin (F-actin) in response to FcepsilonRI stimulation. These data implicate Pak1 as an essential molecular target for modulating acute mast cell responses that contribute to allergic diseases.


Blood | 2008

Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells

Andrew S. McDaniel; Jayme D. Allen; Su Jung Park; Zahara M. Jaffer; Elizabeth G. Michels; Sarah Burgin; Shi Chen; Waylan K. Bessler; Clemens Hofmann; David A. Ingram; Jonathan Chernoff; D. Wade Clapp

Neurofibromatosis type 1 (NF1) is a common genetic disorder caused by mutations in the NF1 locus, which encodes neurofibromin, a negative regulator of Ras. Patients with NF1 develop numerous neurofibromas, which contain many inflammatory mast cells that contribute to tumor formation. Subsequent to c-Kit stimulation, signaling from Ras to Rac1/2 to the MAPK pathway appears to be responsible for multiple hyperactive mast cell phenotypes; however, the specific effectors that mediate these functions remain uncertain. p21-activated kinase 1 (Pak1) is a downstream mediator of Rac1/2 that has been implicated as a positive regulator of MAPK pathway members and is a modulator of cell growth and cytoskeletal dynamics. Using an intercross of Pak 1(-/-) mice with Nf1(+/-) mice, we determined that Pak1 regulates hyperactive Ras-dependent proliferation via a Pak1/Erk pathway, whereas a Pak1/p38 pathway is required for the increased migration in Nf1(+/-) mast cells. Furthermore, we confirmed that loss of Pak1 corrects the dermal accumulation of Nf1(+/-) mast cells in vivo to levels found in wild-type mice. Thus, Pak1 is a novel mast cell mediator that functions as a key node in the MAPK signaling network and potential therapeutic target in NF1 patients.


Journal of Biological Chemistry | 2008

Human Pso4 Is a Metnase (SETMAR)-binding Partner That Regulates Metnase Function in DNA Repair

Brian D. Beck; Su Jung Park; Young Ju Lee; Yaritzabel Roman; Robert Hromas; Suk Hee Lee

Metnase, also known as SETMAR, is a SET and transposase fusion protein with an undefined role in mammalian DNA repair. The SET domain is responsible for histone lysine methyltransferase activity at histone 3 K4 and K36, whereas the transposase domain possesses 5′-terminal inverted repeat (TIR)-specific DNA binding, DNA looping, and DNA cleavage activities. Although the transposase domain is essential for Metnase function in DNA repair, it is not clear how a protein with sequence-specific DNA binding activity plays a role in DNA repair. Here, we show that human homolog of the ScPSO4/PRP19 (hPso4) forms a stable complex with Metnase on both TIR and non-TIR DNA. The transposase domain essential for Metnase-TIR interaction is not sufficient for its interaction with non-TIR DNA in the presence of hPso4. In vivo, hPso4 is induced and co-localized with Metnase following ionizing radiation treatment. Cells treated with hPso4-siRNA failed to show Metnase localization at DSB sites and Metnase-mediated stimulation of DNA end joining coupled to genomic integration, suggesting that hPso4 is necessary to bring Metnase to the DSB sites for its function(s) in DNA repair.


Journal of Biological Chemistry | 1999

Zinc Finger of Replication Protein A, a Non-DNA Binding Element, Regulates Its DNA Binding Activity through Redox

Jang-Su Park; Mu Wang; Su Jung Park; Suk Hee Lee

Eukaryotic replication protein A (RPA) is a single-stranded DNA-binding protein with multiple functions in DNA replication, repair, and genetic recombination. RPA contains an evolutionarily conserved 4-cysteine-type zinc finger motif (X 3CX 2–4CX 12–15CX 2C) that has a potential role in regulation of DNA replication and repair (Dong, J., Park, J-S., and Lee, S-H. (1999) Biochem. J.337, 311–317 and Lin, Y.-L., Shivji, M. K. K., Chen, C., Kolodner, R., Wood, R. D., and Dutta, A. (1998) J. Biol. Chem. 273, 1453–1461), even though the zinc finger itself is not essential for its DNA binding activity (Kim, D. K., Stigger, E., and Lee, S.-H. (1996) J. Biol. Chem. 271, 15124–15129). Here, we show that RPA single-stranded DNA (ssDNA) binding activity is regulated by reduction-oxidation (redox) through its zinc finger domain. RPA-ssDNA interaction was stimulated 10-fold by the reducing agent, dithiothreitol (DTT), whereas treatment of RPA with oxidizing agent, diazene dicarboxylic acid bis[N,N-dimethylamide] (diamide), significantly reduced this interaction. The effect of diamide was reversed by the addition of excess DTT, suggesting that RPA ssDNA binding activity is regulated by redox. Redox regulation of RPA-ssDNA interaction was more effective in the presence of 0.2 m NaCl or higher. Cellular redox factor, thioredoxin, was able to replace DTT in stimulation of RPA DNA binding activity, suggesting that redox protein may be involved in RPA modulation in vivo. In contrast to wild-type RPA, zinc finger mutant (cysteine to alanine mutation at amino acid 486) did not require DTT for its ssDNA binding activity and is not affected by redox. Together, these results suggest a novel function for a putative zinc finger in the regulation of RPA DNA binding activity through cellular redox.


PLOS ONE | 2011

Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

Yongzheng He; Karl Staser; Steven D. Rhodes; Yaling Liu; Xiaohua Wu; Su Jung Park; Jin Yuan; Xianlin Yang; Xiaohong Li; Li Jiang; Shi Chen; Feng Chun Yang

The extracellular signal-regulated kinases (ERK1 and 2) are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1−/− bone marrow mononuclear cells (BMMNCs) demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2−/− BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.


Journal of Biological Chemistry | 1999

Involvement of DNA-dependent Protein Kinase in UV-induced Replication Arrest

Jang-Su Park; Su Jung Park; Xiaodong Peng; Mu Wang; Myeong Ae Yu; Suk Hee Lee

Cells exposed to UV irradiation are predominantly arrested at S-phase as well as at the G1/S boundary while repair occurs. It is not known how UV irradiation induces S-phase arrest and yet permits DNA repair; however, UV-induced inhibition of replication is efficiently reversed by the addition of replication protein A (RPA), suggesting a role for RPA in this regulatory event. Here, we show evidence that DNA-dependent protein kinase (DNA-PK), plays a role in UV-induced replication arrest. DNA synthesis of M059K (DNA-PK catalytic subunit-positive (DNA-PKcs+)), as measured by [3H]thymidine incorporation, was significantly arrested by 4 h following UV irradiation, whereas M059J (DNA-PKcs−) cells were much less affected. Similar results were obtained with the in vitro replication reactions where immediate replication arrest occurred in DNA-PKcs+ cells following UV irradiation, and only a gradual decrease in replication activity was observed in DNA-PKcs− cells. Reversal of replication arrest was observed at 8 h following UV irradiation in DNA-PKcs+cells but not in DNA-PKcs− cells. Reversal of UV-induced replication arrest was also observed in vitro by the addition of a DNA-PK inhibitor, wortmannin, or by immunodepletion of DNA-PKcs, supporting a positive role for DNA-PK in damage-induced replication arrest. The RPA-containing fraction from UV-irradiated DNA-PKcs+ cells poorly supported DNA replication, whereas the replication activity of the RPA-containing fraction from DNA-PKcs− cells was not affected by UV, suggesting that DNA-PKcs may be involved in UV-induced replication arrest through modulation of RPA activity. Together, our results strongly suggest a role for DNA-PK in S-phase (replication) arrest in response to UV irradiation.


Nature Neuroscience | 2014

Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase.

Andrei I. Molosh; Philip L. Johnson; John P. Spence; David Arendt; Lauren M. Federici; Cristian Bernabe; Steven P. Janasik; Zaneer M. Segu; Rajesh Khanna; Chirayu Goswami; Weiguo Zhu; Su Jung Park; Lang Li; Yehia Mechref; D. Wade Clapp; Anantha Shekhar

Children with neurofibromatosis type 1 (NF1) are increasingly recognized as having a high prevalence of social difficulties and autism spectrum disorders (ASDs). We demonstrated a selective social learning deficit in mice with deletion of a single Nf1 allele (Nf1+/−), along with greater activation of the mitogen-activated protein kinase pathway in neurons from the amygdala and frontal cortex, structures that are relevant to social behaviors. The Nf1+/− mice showed aberrant amygdala glutamate and GABA neurotransmission, deficits in long-term potentiation and specific disruptions in the expression of two proteins that are associated with glutamate and GABA neurotransmission: a disintegrin and metalloprotease domain 22 (Adam22) and heat shock protein 70 (Hsp70), respectively. All of these amygdala disruptions were normalized by the additional deletion of the p21 protein-activated kinase (Pak1) gene. We also rescued the social behavior deficits in Nf1+/− mice with pharmacological blockade of Pak1 directly in the amygdala. These findings provide insights and therapeutic targets for patients with NF1 and ASDs.


Journal of Clinical Investigation | 2013

Normal hematopoiesis and neurofibromin-deficient myeloproliferative disease require Erk

Karl Staser; Su Jung Park; Steven D. Rhodes; Yi Zeng; Yong Zheng He; Matthew Shew; Jeffrey R. Gehlhausen; Donna Cerabona; Keshav Menon; Shi Chen; Zejin Sun; Jin Yuan; David A. Ingram; Grzegorz Nalepa; Feng Chun Yang; D. Wade Clapp

Neurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Erk1/2 phosphorylate kinases and transcription factors with myriad mitogenic roles in diverse cell types. However, genetic studies examining Erk1/2s differential and/or combined control of normal and Nf1-deficient myelopoiesis are lacking. Moreover, prior studies relying on chemical Mek/Erk inhibitors have reached conflicting conclusions in normal and Nf1-deficient mice. Here, we show that while single Erk1 or Erk2 disruption did not grossly compromise myelopoiesis, dual Erk1/2 disruption rapidly ablated granulocyte and monocyte production in vivo, diminished progenitor cell number, and prevented HSPC proliferation in vitro. Genetic disruption of Erk1/2 in the context of Nf1 nullizygosity (Mx1Cre(+)Nf1(flox/flox)Erk1(-/-)Erk2(flox/flox)) fully protects against the development of MPD. Collectively, we identified a fundamental requirement for Erk1/2 signaling in normal and Nf1-deficient hematopoiesis, elucidating a critical hematopoietic function for Erk1/2 while genetically validating highly selective Mek/Erk inhibitors in a leukemia that is otherwise resistant to traditional therapy.


Journal of Cell Biology | 2013

The tumor suppressor CDKN3 controls mitosis

Grzegorz Nalepa; Jill S. Barnholtz-Sloan; Rikki Enzor; Dilip Dey; Ying-Ying He; Jeff Gehlhausen; Amalia S. Lehmann; Su Jung Park; Yanzhu Yang; Xianlin Yang; Shi Chen; Xiaowei Guan; Yanwen Chen; Jamie L. Renbarger; Feng Chun Yang; Luis F. Parada; Wade Clapp

A genome-wide screen of phosphatases that control mitosis identified CDKN3, which acts through the CDC2 signaling axis.


Human Molecular Genetics | 2015

A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation

Jeffrey R. Gehlhausen; Su Jung Park; Ann E. Hickox; Matthew Shew; Karl Staser; Steven D. Rhodes; Keshav Menon; Jacquelyn D. Lajiness; Muithi Mwanthi; Xianlin Yang; Jin Yuan; Paul R. Territo; Gary D. Hutchins; Grzegorz Nalepa; Feng Chun Yang; Simon J. Conway; Michael G. Heinz; Anat Stemmer-Rachamimov; Charles W. Yates; D. Wade Clapp

Neurofibromatosis type 2 (NF2) is an autosomal dominant genetic disorder resulting from germline mutations in the NF2 gene. Bilateral vestibular schwannomas, tumors on cranial nerve VIII, are pathognomonic for NF2 disease. Furthermore, schwannomas also commonly develop in other cranial nerves, dorsal root ganglia and peripheral nerves. These tumors are a major cause of morbidity and mortality, and medical therapies to treat them are limited. Animal models that accurately recapitulate the full anatomical spectrum of human NF2-related schwannomas, including the characteristic functional deficits in hearing and balance associated with cranial nerve VIII tumors, would allow systematic evaluation of experimental therapeutics prior to clinical use. Here, we present a genetically engineered NF2 mouse model generated through excision of the Nf2 gene driven by Cre expression under control of a tissue-restricted 3.9kbPeriostin promoter element. By 10 months of age, 100% of Postn-Cre; Nf2(flox/flox) mice develop spinal, peripheral and cranial nerve tumors histologically identical to human schwannomas. In addition, the development of cranial nerve VIII tumors correlates with functional impairments in hearing and balance, as measured by auditory brainstem response and vestibular testing. Overall, the Postn-Cre; Nf2(flox/flox) tumor model provides a novel tool for future mechanistic and therapeutic studies of NF2-associated schwannomas.

Collaboration


Dive into the Su Jung Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge