Su Mei Yew
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Su Mei Yew.
PLOS ONE | 2014
Su Mei Yew; Chai Ling Chan; Kok Wei Lee; Shiang Ling Na; Ruixin Tan; Chee-Choong Hoh; Wai-Yan Yee; Yun Fong Ngeow; Kee Peng Ng
Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ≤1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance.
Genome Announcements | 2014
Kee Peng Ng; Su Mei Yew; Chai Ling Chan; Jennifer Chong; Soo Nee Tang; Tuck Soon Soo-Hoo; Shiang Ling Na; Hamimah Hassan; Yun Fong Ngeow; Chee Choong Hoh; Kok Wei Lee; Wai Yan Yee
ABSTRACT Extensively drug-resistant (XDR) tuberculosis has now been described in >90 countries worldwide. The first case of XDR tuberculosis (XDR-TB) in New Zealand was recorded in 2010. We report the draft whole-genome sequence of the New Zealand isolate, NZXDR1, and describe a number of single-nucleotide polymorphisms that relate to drug resistance.
DNA Research | 2015
Chee Sian Kuan; Su Mei Yew; Yue Fen Toh; Chai Ling Chan; Yun Fong Ngeow; Kok Wei Lee; Shiang Ling Na; Wai-Yan Yee; Chee-Choong Hoh; Kee Peng Ng
Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential.
Eukaryotic Cell | 2012
Kee Peng Ng; Su Mei Yew; Chai Ling Chan; Tuck Soon Soo-Hoo; Shiang Ling Na; Hamimah Hassan; Yun Fong Ngeow; Chee-Choong Hoh; Kok-Wei Lee; Wai-Yan Yee
ABSTRACT Cladosporium sphaerospermum is one of the most widely distributed allergens causing serious problems in patients with respiratory tract disease. We report the 26,644,473-bp draft genome sequence and gene annotation of C. sphaerospermum UM843. Analysis of the genome sequence led to the finding of genes associated with C. sphaerospermums melanin biosynthesis, allergens, and antifungal drug resistance.
PLOS ONE | 2015
Chee Sian Kuan; Chai Ling Chan; Su Mei Yew; Yue Fen Toh; Jia-Shiun Khoo; Jennifer Chong; Kok Wei Lee; Yung-Chie Tan; Wai-Yan Yee; Yun Fong Ngeow; Kee Peng Ng
The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.
Eukaryotic Cell | 2012
Kee Peng Ng; Yun Fong Ngeow; Su Mei Yew; Hamimah Hassan; Tuck Soon Soo-Hoo; Shiang Ling Na; Chai Ling Chan; Chee-Choong Hoh; Kok-Wei Lee; Wai-Yan Yee
ABSTRACT Daldinia eschscholzii is an invasive endophyte that is most commonly found in plant tissues rich in secondary metabolites. We report the draft genome sequence of D. eschscholzii isolated from blood culture. The draft genome is 35,494,957 bp in length, with 42,898,665 reads, 61,449 contigs, and a G+C content of 46.8%. The genome was found to contain a high abundance of genes associated with plant cell wall degradation enzymes, mycotoxin production, and antifungal drug resistance.
Database | 2016
Chee Sian Kuan; Su Mei Yew; Chai Ling Chan; Yue Fen Toh; Kok Wei Lee; Wei-Hien Cheong; Wai-Yan Yee; Chee-Choong Hoh; Soon-Joo Yap; Kee Peng Ng
Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have isolated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mirabilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional annotations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan. All predicted protein models were further functionally annotated to Carbohydrate-Active enzymes, peptidases, secondary metabolites and virulence factors. DemaDb Genome Browser enables users to browse and visualize entire genomes with annotation data including gene prediction, structure, orientation and custom feature tracks. The Pathway Browser based on the KEGG pathway database allows users to look into molecular interaction and reaction networks for all KEGG annotated genes. The availability of downloadable files containing assembly, nucleic acid, as well as protein data allows the direct retrieval for further downstream works. DemaDb is a useful resource for fungal research community especially those involved in genome-scale analysis, functional genomics, genetics and disease studies of dematiaceous fungi. Database URL: http://fungaldb.um.edu.my
Genome Announcements | 2014
Chai Ling Chan; Su Mei Yew; Shiang Ling Na; Yung-Chie Tan; Kok Wei Lee; Wai-Yan Yee; Yun Fong Ngeow; Kee Peng Ng
ABSTRACT Ochroconis constricta is a soilborne dematiaceous fungus that has never been reported to be associated with human infection. Here we report the first draft genome sequence of strain UM 578, isolated from human skin scraping. The genomic information revealed will contribute to a better understanding of this species.
PeerJ | 2017
Hong Keat Looi; Yue Fen Toh; Su Mei Yew; Shiang Ling Na; Yung-Chie Tan; Pei-Sin Chong; Jia-Shiun Khoo; Wai-Yan Yee; Kee Peng Ng; Chee Sian Kuan
Corynespora cassiicola is a common plant pathogen that causes leaf spot disease in a broad range of crop, and it heavily affect rubber trees in Malaysia (Hsueh, 2011; Nghia et al., 2008). The isolation of UM 591 from a patient’s contact lens indicates the pathogenic potential of this dematiaceous fungus in human. However, the underlying factors that contribute to the opportunistic cross-infection have not been fully studied. We employed genome sequencing and gene homology annotations in attempt to identify these factors in UM 591 using data obtained from publicly available bioinformatics databases. The assembly size of UM 591 genome is 41.8 Mbp, and a total of 13,531 (≥99 bp) genes have been predicted. UM 591 is enriched with genes that encode for glycoside hydrolases, carbohydrate esterases, auxiliary activity enzymes and cell wall degrading enzymes. Virulent genes comprising of CAZymes, peptidases, and hypervirulence-associated cutinases were found to be present in the fungal genome. Comparative analysis result shows that UM 591 possesses higher number of carbohydrate esterases family 10 (CE10) CAZymes compared to other species of fungi in this study, and these enzymes hydrolyses wide range of carbohydrate and non-carbohydrate substrates. Putative melanin, siderophore, ent-kaurene, and lycopene biosynthesis gene clusters are predicted, and these gene clusters denote that UM 591 are capable of protecting itself from the UV and chemical stresses, allowing it to adapt to different environment. Putative sterigmatocystin, HC-toxin, cercosporin, and gliotoxin biosynthesis gene cluster are predicted. This finding have highlighted the necrotrophic and invasive nature of UM 591.
Scientific Reports | 2016
Su Mei Yew; Chai Ling Chan; Yun Fong Ngeow; Yue Fen Toh; Shiang Ling Na; Kok Wei Lee; Chee-Choong Hoh; Wai-Yan Yee; Kee Peng Ng; Chee Sian Kuan
Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.