Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Su-Min Lim is active.

Publication


Featured researches published by Su-Min Lim.


Nutrition Research | 2016

Lactobacillus sakei OK67 ameliorates high-fat diet- induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression

Su-Min Lim; Jin-Ju Jeong; Kyung Hee Woo; Myung Joo Han; Dong-Hyun Kim

A high-fat diet (HFD) induces obesity and the associated increases in blood glucose and inflammation through changes in gut microbiota, endotoxemia, and increased gut permeability. To counteract this, researchers have suggested that the use of probiotics that suppress production of proinflammatory lipopolysaccharide (LPS). Here, we tested whether Lactobacillus sakei OK67, which inhibits gut microbiota LPS production selected from among the lactic acid bacteria isolated from kimchi, exerted antihypoglycemic or anti-inflammatory effects in HFD-fed mice. Mice were randomly divided into 2 groups and fed an HFD or a low-fat diet for 4 weeks. These groups were further subdivided; 1 subgroup was treated with L sakei OK67 and fed the experimental diet for 4.5 weeks, whereas the other subgroup was fed the experimental diet alone. L sakei OK67 treatment lowered HFD-elevated LPS levels in blood and colonic fluid and significantly decreased HFD-elevated fasting blood glucose levels and the area under the curve in an oral glucose tolerance test. L sakei OK67 treatment inhibited HFD-induced body and epididymal fat weight gains, suppressed HFD-induced tumor necrosis factor-α and interleukin-1β expression and nuclear factor-κB activation in the colon, and significantly increased HFD-suppressed interleukin-10 and tight junction protein expression in the colon. Oral administration of L sakei OK67 significantly downregulated HFD-induced expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, and tumor necrosis factor-α in adipose tissue. In addition, L sakei OK67 treatment strongly inhibited nuclear factor-κB activation in LPS-stimulated peritoneal macrophages. We report that L sakei OK67 ameliorates HFD-induced hyperglycemia and obesity by reducing inflammation and increasing the expression of colon tight junction proteins in mice.


International Immunopharmacology | 2015

Timosaponin AIII and its metabolite sarsasapogenin ameliorate colitis in mice by inhibiting NF-κB and MAPK activation and restoring Th17/Treg cell balance.

Su-Min Lim; Jin-Ju Jeong; Geum-Dan Kang; Kyung-Ah Kim; Hyun-Sik Choi; Dong-Hyun Kim

The rhizome of Anemarrhena asphodeloides (AA, family Liliaceae), which contains furostanol and spirostanol saponins, is a typical herbal medicine that improves learning and memory in rats and inhibits inflammation. In a preliminary study, timosaponin AIII, one of AA main constituents, was metabolized to sarsasapogenin by gut microbiota and inhibited NF-κB activation in lipopolysaccharide (LPS)-stimulated macrophages. Here we have investigated the anti-inflammatory effects of AIII and sarsasapogenin in vitro and in vivo. Both AIII and sarsasapogenin potently inhibited NF-κB and MAPK activation, as well as IRAK1, TAK1, and IκBα phosphorylation in LPS-stimulated macrophages. Further, AIII and sarsasapogenin inhibited the binding of LPS to macrophage Toll-like receptor 4, as well as polarization of M2 to M1 macrophages. Oral administration of AIII and sarsasapogenin inhibited 2,3,4-trinitrobenzene sulfonic acid (TNBS)-induced colon shortening and myeloperoxidase activity in mice, along with reducing NF-κB activation and interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 levels, while simultaneously increasing IL-10. Both compounds inhibited Th17 cell differentiation in colonic lamina propria, but induced Treg cell differentiation. Further, AIII and sarsasapogenin inhibited the differentiation of splenic CD4(+) T cells into Th17 cells in vitro. The vitro and in vivo anti-inflammatory effects of sarsasapogenin were more potent than AIII. These results suggest that orally administered AIII may be metabolized to sarsasapogenin by gut microbiota, which may ameliorate inflammatory diseases such as colitis by inhibiting TLR4-NF-κB/MAPK signaling pathway and restoring Th17/Treg cell balance.


Phytomedicine | 2016

Neomangiferin modulates the Th17/Treg balance and ameliorates colitis in mice.

Su-Min Lim; Geum-Dan Kang; Jin-Ju Jeong; Hyun Sik Choi; Dong-Hyun Kim

BACKGROUND Anemarrhena asphodeloides (Liliaceae family) and Mangifera indica L. (Anacardiaceae family) contain neomangiferin as the main active constituent and have been used to treat inflammation, asthma, and pain. PURPOSE A preliminary study found that neomangiferin inhibited splenic T cell differentiation into Th17 cells and promoted Treg cell production in vitro. Therefore, we examined its anti-colitic effects in vitro and in vivo. METHODS Splenocytes isolated from C57BL/6J mice were treated with neomangiferin. Colitis was either induced in vivo by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) to C57BL/6J mice or occurred spontaneously in colitis caused by interleukin (IL)-10 knockout at age of 13 weeks. Mice were treated daily with neomangiferin or sulfasalazine. Inflammatory markers, cytokines, enzymes and transcription factors were measured by enzyme-linked immunosorbent assay, immunoblot, and flow cytometry. RESULTS Neomangiferin suppressed retinoic acid receptor-related orphan receptor gamma t (RORγt) and IL-17 expression in IL-6/transforming growth factor β-stimulated Th17 splenocytes and increased IL-10 expression in vitro. Mouse TNBS-induced colon shortening, macroscopic score, and myeloperoxidase activity were inhibited by neomangiferin, which also reduced TNBS-induced activation of nuclear factor-κB and extracellular signal-regulated kinases, as well as expression of inducible nitric oxide synthase and cyclooxygenase-2. In addition, neomangiferin inhibited TNBS-induced expression of tumor necrosis factor-α, IL-17, IL-6, and IL-1β, and increased IL-10 expression. Neomangiferin inhibited TNBS-induced differentiation to Th17 cells and promoted the development of Treg cells. Moreover, in IL-10(-/-) mice, neomangiferin inhibited colonic myeloperoxidase activity, suppressed Th17 cell differentiation, and reduced levels of TNF-α and IL-17. CONCLUSION Neomangiferin may restore the balance between Th17/Treg cells by suppressing IL-17 and RORγt expression and inducing IL-10 and forkhead box P3 expression, thus ameliorating colitis.


International Immunopharmacology | 2015

Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway

Geum-Dan Kang; Su-Min Lim; Dong-Hyun Kim

In a preliminary experiment, it was found that oleanolic acid (OA), which is widely distributed in food and medicinal plants, inhibited interleukin (IL)-6/tumor growth factor beta-induced differentiation of splenic T cells into Th17 cells. Moreover, OA induced the differentiation of splenic T cells into Treg cells. Therefore, we examined the anti-inflammatory effect of OA in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of OA significantly inhibited DSS-induced colon shortening, macroscopic score, and myeloperoxidase activity. Treatment with OA inhibited DSS-induced differentiation to Th17 cells and downregulated the expression of RORγt and IL-17 in the lamina propria of colon and Treg cell differentiation and Foxp3 and IL-10 expression were increased. OA treatment increased the DSS-suppressed expression of tight junction proteins such as ZO-1, occludin, and claudin-1 in the colon. Moreover, OA treatment inhibited DSS-induced expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-17, the activation of NF-κB and mitogen-activated protein kinases, and increased IL-10 expression. OA also inhibited the activation of NF-κB and expression of proinflammatory cytokines in LPS-stimulated peritoneal macrophages. These findings suggest that OA may ameliorate inflammatory diseases such as colitis by inhibiting Th17 cell differentiation and increasing Treg cell differentiation.


Nutrition Research | 2017

Bifidobacterium adolescentis IM38 ameliorates high-fat diet–induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota

Su-Min Lim; Dong-Hyun Kim

Gut microbiota play essential roles in the regulation of human metabolism via symbiotic interactions with the host. Prolonged consumption of high-fat diet (HFD) elevates the Firmicutes to Bacteroidetes ratio and lipopolysaccharide (LPS) production by gut microbiota, thereby increasing the probability of developing metabolic and immune disorders such as obesity and colitis. The use of probiotics with anti-inflammatory properties has been suggested to counteract this effect. Here, we tested whether Bifidobacterium adolescentis IM38, which inhibited nuclear factor-kappa B (NF-κB) activation in Caco-2 cells and peritoneal macrophages and inhibited Escherichia coli LPS production, exerted an anticolitic effect in mice with HFD-induced obesity. Oral administration of IM38 (2×109CFU/mouse per day) for 6 weeks in mice with HFD-induced obesity inhibited whole-body and epididymal fat weight gain. IM38 also increased HFD-suppressed expression of interleukin (IL)-10 and tight junction proteins but significantly downregulated HFD-induced NF-κB activation and tumor necrosis factor expression in the colon. IM38 inhibited differentiation into helper T17 cells and reduced IL-17 levels in the colon of mice with HFD-induced obesity but increased HFD-suppressed differentiation into regulatory T cells and IL-10 levels. Furthermore, treatment with IM38 lowered the HFD-induced LPS levels in blood and colonic fluid, as well as the Proteobacteria to Bacteroidetes ratio in gut microbiota. Therefore, we suggest that IM38 can inhibit HFD-induced LPS production in gut microbiota through the regulation of Proteobacteria to Bacteroidetes ratio and NF-κB activation in the colon, which ultimately attenuates colitis. Thus, IM38 may be a suitable ingredient of functional foods designed for treating or preventing colitis.


International Immunopharmacology | 2016

Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis.

Su-Min Lim; Jin-Ju Jeong; Hyun Sik Choi; Hwan Bong Chang; Dong-Hyun Kim

In the previous study, 80% ethanol extract of the rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis (AC) and its main constituent mangiferin improved TNBS-induced colitis in mice by inhibiting macrophage activation related to the innate immunity. In the preliminary study, we found that AC could inhibit Th17 cell differentiation in mice with TNBS-induced colitis. Therefore, we investigated whether AC and it main constituent mangiferin are capable of inhibiting inflammation by regulating T cell differentiation related to the adaptive immunity in vitro and in vivo. AC and mangiferin potently suppressed colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis. They also suppressed TNBS-induced Th17 cell differentiation and IL-17 expression, but increased TNBS-suppressed Treg cell differentiation and IL-10 expression. Moreover, AC and mangiferin strongly inhibited the expression of TNF-α and IL-17, as well as the activation of NF-κB. Furthermore, mangiferin potently inhibited the differentiation of splenocytes into Th7 cells and increased the differentiation into Treg cells in vitro. Mangiferin also inhibited RORγt and IL-17 expression and STAT3 activation in splenocytes and induced Foxp3 and IL-10 expression and STAT5 activation. Based on these findings, mangiferin may ameliorate colitis by the restoration of disturbed Th17/Treg cells and inhibition of macrophage activation.


Immunopharmacology and Immunotoxicology | 2016

Lactobacillus sakei K17, an inducer of IL-10 expression in antigen-presenting cells, attenuates TNBS-induced colitis in mice

Su-Hyeon Eun; Su-Min Lim; Se-Eun Jang; Myung Joo Han; Dong-Hyun Kim

Abstract To understand the anti-colitic effects of probiotics that up-regulate interleukin (IL)-10 expression in dendritic cells (DCs) and macrophages, we isolated Lactobacillus sakei K17, which potently induced IL-10 expression in DCs and peritoneal macrophages in vitro, among the lactic acid bacteria strains collected from kimchi and investigated its anti-inflammatory effect in mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Oral administration of K17 (2 × 109 CFU·mouse−1·day−1) in mice with TNBS-induced colitis suppressed colon shortening and myeloperoxidase activity, as well as infiltration of CD86+ cells into the colon. Treatment with K17 also increased TNBS-suppressed expression of tight junction proteins and IL-10, but inhibited activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases and expression of tumor necrosis factor α and IL-17. Its effect was comparable with that of sulfasalazine (50 mg/kg), a positive commercial ant-colitic drug. Furthermore, treatment with K17 (1 × 105 CFU/mL) potently inhibited lipopolysaccharide (LPS)-stimulated NF-κB activation in DCs and peritoneal macrophages and restored tight junction protein expression in LPS-stimulated Caco-2 cells. These findings suggest that Lactobacillus sakei K17 may ameliorate colitis by up-regulating the expression of IL-10 and tight junction proteins and inhibiting NF-κB activation.


Biochemical Pharmacology | 2016

Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin

In Sook Kim; Dae-Hyeong Yoo; Il-Hoon Jung; Su-Min Lim; Jin-Ju Jeong; Kyeong-A Kim; Ok-Nam Bae; Hye Hyun Yoo; Dong-Hyun Kim

In this study, we investigated the effects of antibiotics on the pharmacological effects of aspirin. The antithrombotic activity of aspirin was evaluated after antibiotic treatment using tail bleeding assay. The pyrosequencing analysis and selective medium culture assay were performed to investigate the alterations in gut microbiota. In addition, the in vitro metabolism assay with fecal suspension and in vivo pharmacokinetic experiments with antibiotic treatment were conducted. Ampicillin treatment significantly prolonged the bleeding time in aspirin-dosed rats. Oral administration of ampicillin significantly reduced gut microbial aspirin-metabolizing activity by 67.0% in rats. Furthermore, systemic exposure to aspirin and its primary metabolite (M1) was significantly increased in ampicillin-treated rats. The results from the pyrosequencing and selective medium culture with rat fecal samples revealed that ampicillin treatment led to the changes of the amounts and composition profile of gut microbiota. These findings suggest that co-administration of antibiotics can modulate the metabolism and pharmacokinetics of aspirin via suppression of metabolic activity of gut microbiota, which could potentiate the therapeutic potency of aspirin.


Journal of Agricultural and Food Chemistry | 2017

Soyasapogenol B and Genistein Attenuate Lipopolysaccharide-Induced Memory Impairment in Mice by the Modulation of NF-κB-Mediated BDNF Expression

Hae-Ji Lee; Su-Min Lim; Da-Bin Ko; Jin-Ju Jeong; Yun-Ha Hwang; Dong-Hyun Kim

Lactobacillus plantarum C29-fermented defatted soybean (FDS), which contains soyasaponins such as soyasaponin I (SI) and soyasapogenol B (SB) and isoflavones such as genistin (GE) and genistein (GT), attenuated memory impairment in mice. Moreover, in the preliminary study, FDS and its soyasaponins and isoflavones significantly inhibited NF-κB activation in LPS-stimulated microglial BV2 cells. Therefore, we examined the effects of FDS and its constituents SI, SB, GT, and GE on LPS-induced memory impairment in mice. Oral administration of FDS (80 mg/kg), which has higher concentrations of SB and GE than DS, recovered LPS-impaired cognitive function in Y-maze (55.1 ± 3.5%) and passive avoidance tasks (50.9 ± 19.2 s) to 129.2% (74.1 ± 3.5%) and 114.2% (290.0 ± 22.4 s) of normal mice, respectively (P < 0.05). SB and GE (10 μM) also more potently attenuated LPS-impaired cognitive behavior than SI and GT, respectively. SB (10 mg/kg) was the most effective: treatment recovered LPS-impaired spontaneous alternation and latency time to 105.7% and 126.8% of normal control mice, respectively (P < 0.05). SB and GE significantly increased BDNF expression and CREB phosphorylation in LPS-treated mice and corticosterone-stimulated SH-SY5Y cells. Furthermore, SB and GE (10 μM) also significantly inhibited NF-κB activation in LPS-treated mice. These findings suggested that FDS and its constituent soyasaponins and isoflavones may attenuate memory impairment by the regulation of NF-κB-mediated BDNF expression.


Biomolecules & Therapeutics | 2016

DW2007 Ameliorates Colitis and Rheumatoid Arthritis in Mice by Correcting Th17/Treg Imbalance and Inhibiting NF-κB Activation

Su-Min Lim; Sang-Yun Lee; Jin-Ju Jeong; Hyun Sik Choi; Hwan Bong Chang; Dong-Hyun Kim

In the previous study, the rhizome mixture of Anemarrhena asphodeloides and Coptis chinensis (DW2007), improved TNBS-, oxazolone-, or DSS-induced colitis in mice by regulating macrophage activation. Therefore, to understand the effect of DW2007 on the T cell differentiation involved in the adaptive immunity, we measured its effect on both Th17 and Treg cell differentiation in splenocytes, in the lamina propria of mice with DSS-induced colitis (DIC), and in the spleens of mice with collagen-induced arthritis (CIA). Results showed that DW2007 potently inhibited the differentiation of splenocytes into Th17 cells, but increased Treg cell differentiation in vitro. In the colon of wild type and TLR4−/− mice with DIC, DW2007 potently suppressed DSS-induced colon shortening and myeloperoxidase activity. DW2007 also suppressed collagen-induced paw thickening, clinical index, and myeloperoxidase activity in CIA mice. Overall, DW2007 potently suppressed Th17 cell differentiation in mice with CIA and DIC, but increased Treg cell differentiation. Moreover, DW2007 strongly inhibited the expression of TNF-α and IL-1β, as well as the activation of NF-κB. Based on these findings, DW2007 may ameliorate inflammatory diseases by regulating the innate immunity via the inhibition of macrophage activation and the adaptive immunity via the correction of disturbed Th17/Treg cells.

Collaboration


Dive into the Su-Min Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge