Su Zhengan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Su Zhengan.
Pedosphere | 2010
Su Zhengan; Zhang Jianhui; Nie XiaoJun
Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin, southwestern China. Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m). On the long slope (110 m) and medium slope (40 m), water erosion was the dominant erosion process. Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137Cs inventories on the long slope; however, there was no significant correlation among them on the short slope, suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions, while tillage erosion transported soil materials unselectively. On the medium slope, SOM, total N, and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope, indicating that water erosion on this slope was still the dominant soil redistribution process. Similar patterns were found for the responses of grain yield, aboveground biomass, and harvest index for slopes. These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth.
PLOS ONE | 2013
Nie XiaoJun; Zhang Jianhui; Su Zhengan
Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.
Journal of Mountain Science | 2016
Su Zhengan; Xiong Donghong; Deng Wei; Dong Yifan; Ma Jing; C. Poudel Padma; B. Sher Gurung
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen (TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2 (1 Bq (i.e., one Becquerel) is equal to 1 disintegration per second (1 dps)). For each terrace, the 137Cs inventory generally increased from upper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces (lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatial variation in soil erosion was similar to the “standard” water erosion model. Soil organic carbon (SOC) and TN inventories showed similar spatial patterns to the 137Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction (clay sized) and 137Cs inventories in terraced fields, while different patterns could be found between 137Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal.
Transactions of the Chinese Society of Agricultural Engineering | 2009
Su Zhengan; Zhang Jianhui; Nie XiaoJun
Archive | 2013
Xiong Donghong; Yang Dan; Dong Yifan; Su Zhengan; Li Jiajia; Zhang Baojun; Zheng Xueyong
Archive | 2012
Xiong Donghong; Li Jiajia; Dong Yifan; Su Zhengan; Yang Dan
Archive | 2017
Su Zhengan; Yang Chao; Zhang Jianhui; Qin Wei; Xiong Donghong; Dong Yifan; Yin Zhe
Shuitu Baochi Xuebao | 2016
Yang Chao; Su Zhengan; Ma Jing; Xiong Donghong; Dong Yifan; Zhang Dan; Xu Xia
Shandi Kexue Xuebao(Yingwenban) | 2016
Su Zhengan; Xiong Donghong; Deng Wei; Dong Yifan; Ma Jing; Padma C Poudel; Sher Gurung B
Archive | 2016
Xiong Donghong; Zheng Xueyong; Zhang Su; Guo Min; Zhang Baojun; Yang Dan; Dong Yifan; Su Zhengan; Chen Wenxian