Sua Myong
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sua Myong.
Science | 2009
Sua Myong; Sheng Cui; Peter V. Cornish; Axel Kirchhofer; Michaela U. Gack; Jae U. Jung; Karl-Peter Hopfner; Taekjip Ha
Retinoic acid inducible–gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5′-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5′-triphosphate–powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5′-triphosphate, and the activation by 5′-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.
Cell | 2006
Chirlmin Joo; Sean A. McKinney; Muneaki Nakamura; Ivan Rasnik; Sua Myong; Taekjip Ha
RecA and its homologs help maintain genomic integrity through recombination. Using single-molecule fluorescence assays and hidden Markov modeling, we show the most direct evidence that a RecA filament grows and shrinks primarily one monomer at a time and only at the extremities. Both ends grow and shrink, contrary to expectation, but a higher binding rate at one end is responsible for directional filament growth. Quantitative rate determination also provides insights into how RecA might control DNA accessibility in vivo. We find that about five monomers are sufficient for filament nucleation. Although ordinarily single-stranded DNA binding protein (SSB) prevents filament nucleation, single RecA monomers can easily be added to an existing filament and displace SSB from DNA at the rate of filament extension. This supports the proposal for a passive role of RecA-loading machineries in SSB removal.
Nature | 2005
Sua Myong; Ivan Rasnik; Chirlmin Joo; Timothy M. Lohman; Taekjip Ha
Many helicases modulate recombination, an essential process that needs to be tightly controlled. Mutations in some human disease helicases cause increased recombination, genome instability and cancer. To elucidate the potential mode of action of these enzymes, here we developed a single-molecule fluorescence assay that can visualize DNA binding and translocation of Escherichia coli Rep, a superfamily 1 DNA helicase homologous to Saccharomyces cerevisiae Srs2. Individual Rep monomers were observed to move on single-stranded (ss)DNA in the 3′ to 5′ direction using ATP hydrolysis. Strikingly, on hitting a blockade, such as duplex DNA or streptavidin, the protein abruptly snapped back close to its initial position, followed by further cycles of translocation and snapback. This repetitive shuttling is likely to be caused by a blockade-induced protein conformational change that enhances DNA affinity for the proteins secondary DNA binding site, thereby resulting in a transient DNA loop. Repetitive shuttling was also observed on ssDNA bounded by a stalled replication fork and an Okazaki fragment analogue, and the presence of Rep delayed formation of a filament of recombination protein RecA on ssDNA. Thus, the binding of a single Rep monomer to a stalled replication fork can lead to repetitive shuttling along the single-stranded region, possibly keeping the DNA clear of toxic recombination intermediates.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Shana Elbaum-Garfinkle; Young Hoon Kim; Krzysztof Jakub Szczepaniak; Carlos Chih-Hsiung Chen; Christian R. Eckmann; Sua Myong; Clifford P. Brangwynne
Significance Phase transitions have recently emerged as a key mechanism for intracellular organization. However, the underlying molecular interactions and nature of the resulting condensed phases are poorly understood. Here, we identify a role for LAF-1 in the liquid phase separation of P granules—RNA/protein assemblies implicated in germ-line maintenance. We adapt microrheology techniques to measure precise viscoelastic properties of LAF-1 liquid droplets. Our experiments reveal that electrostatic disordered protein interactions give rise to droplets with tunable material properties. RNA can fluidize protein droplets by decreasing the viscosity and increasing internal molecular dynamics. Our results provide insight into the mechanism by which molecular level interactions can give rise to liquid phase organelles with tunable material properties, potentially underlying biologically adaptable functions. P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA–protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA–protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.
Science | 2015
Robert J.A. Bell; H. Tomas Rube; Alex Kreig; Andrew Mancini; Shaun D. Fouse; Raman P. Nagarajan; Serah Choi; Chibo Hong; Daniel He; Melike Pekmezci; John K. Wiencke; Margaret Wrensch; Susan M. Chang; Kyle M. Walsh; Sua Myong; Jun S. Song; Joseph F. Costello
A mutant promoters partner in crime Telomerase is an enzyme that maintains the ends of chromosomes. TERT, the gene coding for the enzymes catalytic subunit, is not expressed in healthy somatic cells, but its expression is reactivated in the majority of human cancers. The resultant high levels of telomerase help cancer cells survive and multiply. Recurrent mutations in the promoter region of TERT are associated with high telomerase levels in multiple cancer types. Bell et al. show that a specific transcription factor called GABP is selectively recruited to the mutant form of the TERT promoter, which activates TERT gene expression Science, this issue p. 1036 Cancer-associated mutations in the promoter of the telomerase gene allow increased activation by transcription factor binding. Reactivation of telomerase reverse transcriptase (TERT) expression enables cells to overcome replicative senescence and escape apoptosis, which are fundamental steps in the initiation of human cancer. Multiple cancer types, including up to 83% of glioblastomas (GBMs), harbor highly recurrent TERT promoter mutations of unknown function but specific to two nucleotide positions. We identified the functional consequence of these mutations in GBMs to be recruitment of the multimeric GA-binding protein (GABP) transcription factor specifically to the mutant promoter. Allelic recruitment of GABP is consistently observed across four cancer types, highlighting a shared mechanism underlying TERT reactivation. Tandem flanking native E26 transformation-specific motifs critically cooperate with these mutations to activate TERT, probably by facilitating GABP heterotetramer binding. GABP thus directly links TERT promoter mutations to aberrant expression in multiple cancers.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Michaela U. Gack; Axel Kirchhofer; Young C. Shin; Kyung Soo Inn; Chengyu Liang; Sheng Cui; Sua Myong; Taekjip Ha; Karl-Peter Hopfner; Jae U. Jung
The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5′-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K63-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T55I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K172R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36–80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-β production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Helen Hwang; Hajin Kim; Sua Myong
Single-molecule FRET has been widely used for monitoring protein–nucleic acids interactions. Direct visualization of the interactions, however, often requires a site-specific labeling of the protein, which can be circuitous and inefficient. In addition, FRET is insensitive to distance changes in the 0–3-nm range. Here, we report a systematic calibration of a single molecule fluorescence assay termed protein induced fluorescence enhancement. This method circumvents protein labeling and displays a marked distance dependence below the 4-nm distance range. The enhancement of fluorescence is based on the photophysical phenomenon whereby the intensity of a fluorophore increases upon proximal binding of a protein. Our data reveals that the method can resolve as small as a single base pair distance at the extreme vicinity of the fluorophore, where the enhancement is maximized. We demonstrate the general applicability and distance sensitivity using (a) a finely spaced DNA ladder carrying a restriction site for BamHI, (b) RNA translocation by DExH enzyme RIG‐I, and (c) filament dynamics of RecA on single-stranded DNA. The high spatio-temporal resolution data and sensitivity to short distances combined with the ability to bypass protein labeling makes this assay an effective alternative or a complement to FRET.
Cell | 2010
Jeehae Park; Sua Myong; Anita Niedziela-Majka; Kyung Suk Lee; Jin Yu; Timothy M. Lohman; Taekjip Ha
Translocation of helicase-like proteins on nucleic acids underlies key cellular functions. However, it is still unclear how translocation can drive removal of DNA-bound proteins, and basic properties like the elementary step size remain controversial. Using single-molecule fluorescence analysis on a prototypical superfamily 1 helicase, Bacillus stearothermophilus PcrA, we discovered that PcrA preferentially translocates on the DNA lagging strand instead of unwinding the template duplex. PcrA anchors itself to the template duplex using the 2B subdomain and reels in the lagging strand, extruding a single-stranded loop. Static disorder limited previous ensemble studies of a PcrA stepping mechanism. Here, highly repetitive looping revealed that PcrA translocates in uniform steps of 1 nt. This reeling-in activity requires the open conformation of PcrA and can rapidly dismantle a preformed RecA filament even at low PcrA concentrations, suggesting a mode of action for eliminating potentially deleterious recombination intermediates.
Nucleic Acids Research | 2014
Ramreddy Tippana; Weikun Xiao; Sua Myong
The quadruplex forming G-rich sequences are unevenly distributed throughout the human genome. Their enrichment in oncogenic promoters and telomeres has generated interest in targeting G-quadruplex (GQ) for an anticancer therapy. Here, we present a quantitative analysis on the conformations and dynamics of GQ forming sequences measured by single molecule fluorescence. Additionally, we relate these properties to GQ targeting ligands and G4 resolvase 1 (G4R1) protein binding. Our result shows that both the loop (non-G components) length and sequence contribute to the conformation of the GQ. Real time single molecule traces reveal that the folding dynamics also depend on the loop composition. We demonstrate that GQ-stabilizing small molecules, N-methyl mesoporphyrin IX (NMM), its analog, NMP and the G4R1 protein bind selectively to the parallel GQ conformation. Our findings point to the complexity of GQ folding governed by the loop length and sequence and how the GQ conformation determines the small molecule and protein binding propensity.
Journal of Biological Chemistry | 2013
Annie M. Bruns; Darja Pollpeter; Nastaran Hadizadeh; Sua Myong; John F. Marko; Curt M. Horvath
Background: Laboratory of genetics and physiology 2 (LGP2) is a cytoplasmic RNA receptor required for innate antiviral signaling. Results: LGP2 uses ATP hydrolysis to diversify RNA recognition and enhance antiviral signaling. Conclusion: LGP2 mediates antiviral responses by ATP-enhanced RNA recognition. Significance: This study reveals a novel property of LGP2 providing a mechanistic basis for its positive role in antiviral signaling. Laboratory of genetics and physiology 2 (LGP2) is a member of the RIG-I-like receptor family of cytoplasmic pattern recognition receptors that detect molecular signatures of virus infection and initiate antiviral signal transduction cascades. The ATP hydrolysis activity of LGP2 is essential for antiviral signaling, but it has been unclear how the enzymatic properties of LGP2 regulate its biological response. Quantitative analysis of the dsRNA binding and enzymatic activities of LGP2 revealed high dsRNA-independent ATP hydrolysis activity. Biochemical assays and single-molecule analysis of LGP2 and mutant variants that dissociate basal from dsRNA-stimulated ATP hydrolysis demonstrate that LGP2 utilizes basal ATP hydrolysis to enhance and diversify its RNA recognition capacity, enabling the protein to associate with intrinsically poor substrates. This property is required for LGP2 to synergize with another RIG-I-like receptor, MDA5, to potentiate IFNβ transcription in vivo during infection with encephalomyocarditis virus or transfection with poly(I:C). These results demonstrate previously unrecognized properties of LGP2 ATP hydrolysis and RNA interaction and provide a mechanistic basis for a positive regulatory role for LGP2 in antiviral signaling.