Suan-Choo Cheah
Malaysian Palm Oil Board
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suan-Choo Cheah.
BMC Plant Biology | 2009
Rajinder Singh; Soon Guan Tan; Jothi Malar Panandam; Rahimah Abdul Rahman; Leslie Cl Ooi; Eng-Ti Leslie Low; Mukesh Sharma; Johannes Jansen; Suan-Choo Cheah
BackgroundMarker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials.ResultsA map was constructed using AFLP, RFLP and SSR markers for an interspecific cross involving a Colombian Elaeis oleifera (UP1026) and a Nigerian E. guinneensis (T128). A framework map was generated for the male parent, T128, using Joinmap ver. 4.0. In the paternal (E. guineensis) map, 252 markers (199 AFLP, 38 RFLP and 15 SSR) could be ordered in 21 linkage groups (1815 cM). Interval mapping and multiple-QTL model (MQM) mapping (also known as composite interval mapping, CIM) were used to detect quantitative trait loci (QTLs) controlling oil quality (measured in terms of iodine value and fatty acid composition). At a 5% genome-wide significance threshold level, QTLs associated with iodine value (IV), myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2) content were detected. One genomic region on Group 1 appears to be influencing IV, C14:0, C16:0, C18:0 and C18:1 content. Significant QTL for C14:0, C16:1, C18:0 and C18:1 content was detected around the same locus on Group 15, thus revealing another major locus influencing fatty acid composition in oil palm. Additional QTL for C18:0 was detected on Group 3. A minor QTL for C18:2 was detected on Group 2.ConclusionThis study describes the first successful detection of QTLs for fatty acid composition in oil palm. These QTLs constitute useful tools for application in breeding programmes.
Biologia | 2008
Rajinder Singh; Noorhariza Mohd Zaki; Ngoot-Chin Ting; Rozana Rosli; Soon-Guan Tan; Eng-Ti Leslie Low; Maizura Ithnin; Suan-Choo Cheah
A total of 5,521 expressed sequence tags (ESTs) from oil palm were used to search for type and frequency of simple sequence repeat (SSR) markers. Dimeric repeat motifs appeared to be the most abundant, followed by tri-nucleotide repeats. Redundancy was eliminated in the original EST set, resulting in 145 SSRs in 136 unique ESTs (114 singletons and 22 clusters). Primers were designed for 94 (69.1%) of the unique ESTs (consisting of 14 consensus and 80 singletons). Primers for 10 EST-SSRs were developed and used to evaluate the genetic diversity of 76 accessions of oil palm originating from seven countries in Africa, and the standard Deli dura population. The average number of observed and effective alleles was 2.56 and 1.84, respectively. The EST-SSR markers were found to be polymorphic with a mean polymorphic information content value of 0.53. Genetic differentiation (FST) among the populations studied was 0.2492 indicating high level of genetic divergence. Moreover, the UPGMA (unweighted pair-group method with arithmetic mean) analysis revealed a strong association between genetic distance and geographic location of the populations studied. The germplasm materials exhibited higher diversity than Deli dura, indicating their potential usefulness in oil palm improvement programmes. The study also revealed that the populations from Nigeria, Congo and Cameroon showed the highest diversity among the germplasm evaluated in this study. The EST-SSRs further demonstrated their worth as a new source of polymorphic markers for phylogenetic analysis, since a high percentage of the markers showed transferability across species and palm taxa.
Journal of Genetics | 2010
Ngoot-Chin Ting; Noorhariza Mohd Zaki; Rozana Rosli; Eng-Ti Leslie Low; Maizura Ithnin; Suan-Choo Cheah; Soon-Guan Tan; Rajinder Singh
This study reports on the detection of additional expressed sequence tags (EST) derived simple sequence repeat (SSR) markers for the oil palm. A large collection of 19243 Elaeis guineensis ESTs were assembled to give 10258 unique sequences, of which 629 ESTs were found to contain 722 SSRs with a variety of motifs. Dinucleotide repeats formed the largest group (45.6%) consisting of 66.9% AG/CT, 21.9% AT/AT, 10.9% AC/GT and 0.3% CG/CG motifs. This was followed by trinucleotide repeats, which is the second most abundant repeat types (34.5%) consisting of AAG/CTT (23.3%), AGG/CCT (13.7%), CCG/CGG (11.2%), AAT/ATT (10.8%), AGC/GCT (10.0%), ACT/AGT (8.8%), ACG/CGT (7.6%), ACC/GGT (7.2%), AAC/GTT (3.6%) and AGT/ACT (3.6%) motifs. Primer pairs were designed for 405 unique EST-SSRs and 15 of these were used to genotype 105 E. guineensis and 30 E. oleifera accessions. Fourteen SSRs were polymorphic in at least one germplasm revealing a total of 101 alleles. The high percentage (78.0%) of alleles found to be specific for either E. guineensis or E. oleifera has increased the power for discriminating the two species. The estimates of genetic differentiation detected by EST-SSRs were compared to those reported previously. The transferability across palm taxa to two Cocos nucifera and six exotic palms is also presented. The polymerase chain reaction (PCR) products of three primer-pairs detected in E. guineensis, E. oleifera, C. nucifera and Jessinia bataua were cloned and sequenced. Sequence alignments showed mutations within the SSR site and the flanking regions. Phenetic analysis based on the sequence data revealed that C. nucifera is closer to oil palm compared to J. bataua; consistent with the taxanomic classification.
Biochemical Society Transactions | 2000
Ghulam Kadir Ahmad Parveez; Masnita Mohd Masri; Alizah Zainal; Na’imatulapidah Abdul Majid; Abdul Masani Mat Yunus; Haliza Haris Fadilah; Omar Abdul Rasid; Suan-Choo Cheah
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
PLOS ONE | 2013
Ngoot-Chin Ting; Johannes Jansen; Jayanthi Nagappan; Zamzuri Ishak; Cheuk-Weng Chin; Soon-Guan Tan; Suan-Choo Cheah; Rajinder Singh
Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm.
Electronic Journal of Biotechnology | 2010
Pek-Lan Chan; Lay-Sun Ma; Eng-Ti Leslie Low; Elyana M. Shariff; Leslie Cheng-Li Ooi; Suan-Choo Cheah; Rajinder Singh
A normalized embryoid cDNA library (EON) was constructed based on reassociation kinetics reaction. Results from dot blot hybridization and sequencing of EON cDNA clones clearly indicated that the normalization process reduced the frequency of high abundance transcripts and increased the frequency of low abundance gene transcripts. A total of 553 non-redundant expressed sequence tags (ESTs) were identified, 325 of these were not observed in the standard oil palm cDNA libraries sequenced previously. A total of 10 EON cDNA clones were chosen for expression profiling across samples from different stages of the tissue culture process. Two of the genes exhibited promising expression patterns for predicting the embryogenic potential in callus. Some of these genes were also differentially expressed in the various tissues of oil palm. This study showed that normalization of the existing embryoid library improved the chances of identifying transcripts not captured in the standard libraries, some of which could be associated with embryogenesis. This collection of ESTs is particularly well suited for use as candidate genes for development of an oil palm DNA chip, which can be used to obtain a more comprehensive view of the molecular mechanism associated with oil palm tissue culture.
Theoretical and Applied Genetics | 2005
Norbert Billotte; Nicolas Marseillac; Ange-Marie Risterucci; Benjamin Adon; Philippe Brottier; Franc-Christophe Baurens; Rajinder Singh; Ana Herran; H. Asmady; Claire Billot; Philippe Amblard; Tristan Durand-Gasselin; Brigitte Courtois; Dwi Asmono; Suan-Choo Cheah; Wolfgang Rohde; Enrique Ritter; André Charrier
Theoretical and Applied Genetics | 2010
Norbert Billotte; M.F. Jourjon; Nicolas Marseillac; Angélique Berger; Albert Flori; H. Asmady; Benjamin Adon; Rajinder Singh; Bruno Nouy; Françoise Potier; Suan-Choo Cheah; Wolfgang Rohde; Enrique Ritter; Brigitte Courtois; André Charrier; Brigitte Mangin
Tree Physiology | 2006
Fabienne Morcillo; Cyrill Gagneur; Frédérique Richaud; Rajinder Singh; Suan-Choo Cheah; Alain Rival; Yves Duval; James Tregear
Journal of Oil Palm Research | 1999
Rajinder Singh; Suan-Choo Cheah
Collaboration
Dive into the Suan-Choo Cheah's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputs