Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subha Pratihar is active.

Publication


Featured researches published by Subha Pratihar.


Journal of the American Chemical Society | 2017

Direct Chemical Dynamics Simulations

Subha Pratihar; Xinyou Ma; Zahra Homayoon; George L. Barnes; William L. Hase

In a direct dynamics simulation, the technologies of chemical dynamics and electronic structure theory are coupled so that the potential energy, gradient, and Hessian required from the simulation are obtained directly from the electronic structure theory. These simulations are extensively used to (1) interpret experimental results and understand the atomic-level dynamics of chemical reactions; (2) illustrate the ability of classical simulations to correctly interpret and predict chemical dynamics when quantum effects are expected to be unimportant; (3) obtain the correct classical dynamics predicted by an electronic structure theory; (4) determine a deeper understanding of when statistical theories are valid for predicting the mechanisms and rates of chemical reactions; and (5) discover new reaction pathways and chemical dynamics. Direct dynamics simulation studies are described for bimolecular SN2 nucleophilic substitution, unimolecular decomposition, post-transition-state dynamics, mass spectrometry experiments, and semiclassical vibrational spectra. Also included are discussions of quantum effects, the accuracy of classical chemical dynamics simulation, and the methodology of direct dynamics.


Journal of Physical Chemistry A | 2014

Properties of Complexes Formed by Na+, Mg2+, and Fe2+ Binding with Benzene Molecules

Sujitha Kolakkandy; Subha Pratihar; Adélia J. A. Aquino; Hai Wang; William L. Hase

A theoretical investigation was performed to study cation-π interactions in complexes of benzene (Bz) with cations, that is, M(z+)(Bz)n for M(z+) = Na(+), Mg(2+), Fe(2+) and n = 1-3, using MP2 theory with the 6-31+G* and 6-311++G** basis sets and the DFT/(B3LYP and B3LYP-D)/6-311++G** methods. Binding energies and structures of the complexes are reported. The splitting between the quintet and single states of the Fe(2+) complexes was found to depend on the number of benzene molecules in the complex and the complexs structure. All of the M(z+)(Bz) complexes prefer a half-sandwich geometry. A geometry with the cation sandwiched between the two benzene rings was found for the M(z+)(Bz)2 complexes, with the benzene rings either in an eclipsed or staggered conformation. An approximate cyclic structure, with the cation at its center, was found for three benzene molecules interacting with the cation. The cation-benzene binding energy is substantial and equal to 22, 108, and 151 kcal/mol for the Na(+)(Bz), Mg(2+)(Bz), and Fe(2+)(Bz) complexes, respectively. The strength of the interaction of the cation with an individual benzene molecule decreases as the number of benzene molecules bound to the cation increases; for example, it is 108 kcal/mol for Mg(2+)(Bz), but only 71 kcal/mol for Mg(2+)(Bz)3. There is a range of values for the M(z+)(Bz)n intermolecular vibrational frequencies; for example, they are ∼230-360 and ∼10-330 cm(-1) for the Mg(2+)(Bz) and Mg(2+)(Bz)3 complexes, respectively. Binding of the cation to benzene both red and blue shifts the benzene vibrational frequencies. This shifting is larger for the Mg(2+) and Fe(2+) complexes, as compared to those for Na(+), as a result of the formers stronger cation-benzene binding. The present study is an initial step to understand the possible importance of cation-π interactions for polycyclic aromatic hydrocarbon aggregation processes during soot formation.


Journal of Physical Chemistry A | 2010

Excess Electron and Lithium Atom Solvation in Water Clusters at Finite Temperature: An ab Initio Molecular Dynamics Study of the Structural, Spectral, and Dynamical Behavior of (H2O)6- and Li(H2O)6

Subha Pratihar; Amalendu Chandra

The roles of hydrogen bonds in the solvation of an excess electron and a lithium atom in water hexamer cluster at 150 K have been studied by means of ab initio molecular dynamics simulations. It is found that the hydrogen bonded structures of (H(2)O)(6)(-) and Li(H(2)O)(6) clusters are very different from each other and they dynamically evolve from one conformer to other along their simulation trajectories. The populations of the single acceptor, double acceptor, and free type water molecules are found to be significantly high unlike that in pure water clusters. Free hydrogens of these type of water molecules primarily capture the unbound electron density in these clusters. It is found that the binding motifs of the free electron evolve with time and the vertical detachment energy of (H(2)O)(6)(-) and vertical ionization energy of Li(H(2)O)(6) also change with time. Assignments of the observed peaks in vibrational power spectra are done, and we found direct correlations between the time-averaged population of water molecules in different hydrogen bonding states and the spectral features. The dynamical aspects of these clusters have also been studied through calculations of time correlations of instantaneous stretch frequencies of OH modes which are obtained from the simulation trajectories through a time series analysis.


Journal of Chemical Physics | 2011

A first principles molecular dynamics study of lithium atom solvation in binary liquid mixture of water and ammonia: structural, electronic, and dynamical properties.

Subha Pratihar; Amalendu Chandra

The preferential solvation of solutes in mixed solvent systems is an interesting phenomenon that plays important roles in solubility and kinetics. In the present study, solvation of a lithium atom in aqueous ammonia solution has been investigated from first principles molecular dynamics simulations. Solvation of alkali metal atoms, like lithium, in aqueous and ammonia media is particularly interesting because the alkali metal atoms release their valence electrons in these media so as to produce solvated electrons and metal counterions. In the present work, first principles simulations are performed employing the Car-Parrinello molecular dynamics method. Spontaneous ionization of the Li atom is found to occur in the mixed solvent system. From the radial distribution functions, it is found that the Li(+) ion is preferentially solvated by water and the coordination number is mostly four in its first solvation shell and exchange of water molecules between the first and second solvation shells is essentially negligible in the time scale of our simulations. The Li(+) ion and the unbound electron are well separated and screened by the polar solvent molecules. Also the unbound electron is primarily captured by the hydrogens of water molecules. The diffusion rates of Li(+) ion and water molecules in its first solvation shell are found to be rather slow. In the bulk phase, the diffusion of water is found to be slower than that of ammonia molecules because of strong ammonia-water hydrogen bonds that participate in solvating ammonia molecules in the mixture. The ratio of first and second rank orientational correlation functions deviate from 3, which suggests a deviation from the ideal Debye-type orientational diffusion. It is found that the hydrogen bond lifetimes of ammonia-ammonia pairs is very short. However, ammonia-water H-bonds are found to be quite strong when ammonia acts as an acceptor and these hydrogen bonds are found to live longer than even water-water hydrogen bonds.


Journal of Physical Chemistry A | 2016

Model Simulations of the Thermal Dissociation of the TIK(H+)2 Tripeptide: Mechanisms and Kinetic Parameters

Zahra Homayoon; Subha Pratihar; Edward Dratz; Ross Snider; Riccardo Spezia; George L. Barnes; Veronica Macaluso; Ana Martin Somer; William L. Hase

Direct dynamics simulations, utilizing the RM1 semiempirical electronic structure theory, were performed to study the thermal dissociation of the doubly protonated tripeptide threonine-isoleucine-lysine ion, TIK(H+)2, for temperatures of 1250-2500 K, corresponding to classical energies of 1778-3556 kJ/mol. The number of different fragmentation pathways increases with increase in temperature. At 1250 K there are only three fragmentation pathways, with one contributing 85% of the fragmentation. In contrast, at 2500 K, there are 61 pathways, and not one dominates. The same ion is often formed via different pathways, and at 2500 K there are only 14 m/z values for the product ions. The backbone and side-chain fragmentations occur by concerted reactions, with simultaneous proton transfer and bond rupture, and also by homolytic bond ruptures without proton transfer. For each temperature the TIK(H+)2 fragmentation probability versus time is exponential, in accord with the Rice-Ramsperger-Kassel-Marcus and transition state theories. Rate constants versus temperature were determined for two proton transfer and two bond rupture pathways. From Arrhenius plots activation energies Ea and A-factors were determined for these pathways. They are 62-78 kJ/mol and (2-3) × 1012 s-1 for the proton transfer pathways and 153-168 kJ/mol and (2-4) × 1014 s-1 for the bond rupture pathways. For the bond rupture pathways, the product cation radicals undergo significant structural changes during the bond rupture as a result of hydrogen bonding, which lowers their entropies and also their Ea and A parameters relative to those for C-C bond rupture pathways in hydrocarbon molecules. The Ea values determined from the simulation Arrhenius plots are in very good agreement with the reaction barriers for the RM1 method used in the simulations. A preliminary simulation of TIK(H+)2 collision-induced dissociation (CID), at a collision energy of 13 eV (1255 kJ/mol), was also performed to compare with the thermal dissociation simulations. Though the energy transferred to TIK(H+)2 in the collisions is substantially less than the energy for the thermal excitations, there is substantial fragmentation as a result of the localized, nonrandom excitation by the collisions. CID results in different fragmentation pathways with a significant amount of short time nonstatistical fragmentation. Backbone fragmentation is less important, and side-chain fragmentation is more important for the CID simulations as compared to the thermal simulations. The thermal simulations provide information regarding the long-time statistical fragmentation.


Journal of Chemical Physics | 2007

Electron solvation in water-ammonia mixed clusters: Structure, energetics, and the nature of localization states of the excess electron

Subha Pratihar; Amalendu Chandra

The structure and energetics of water-ammonia mixed clusters with an excess electron, [(H2O)n(NH3)m]- with m=1, n=2-6 and m=2, n=2, and also the corresponding neutral clusters are investigated in detail by means of ab initio quantum chemical calculations. The authors focus on the localization structure of the excess electron with respect to its surface versus interiorlike states, its binding to ammonia versus water molecules, the spatial and orientational arrangement of solvent molecules around the excess electron, the changes of the overall hydrogen-bonded structure of the clusters as compared to those of the neutral ones and associated dipole moment changes, vertical detachment energies of the anionic clusters, and also the vertical attachment energies of the neutral clusters. It is found that the hydrogen-bonded structure of the anionic clusters are very different from those of the neutral clusters unlike the case of water-ammonia dimer anion, and these changes in structural arrangements lead to drastically different dipole moments of the anionic and the neutral clusters. The spatial distribution of the singly occupied molecular orbital holding the excess electron shows only surface states for the smaller clusters. However, for n=5 and 6, both surface and interiorlike binding states are found to exist for the excess electron. For the surface states, the excess electron can be bound to the dangling hydrogens of either an ammonia or a water molecule with different degrees of stability and vertical detachment energies. The interiorlike states, wherever they exist, are found to have a higher vertical detachment energy than any of the surface states of the same cluster. Also, for interiorlike states, the ammonia molecule with its dangling hydrogens is always found to stay on top or on a far side of the charge density of the excess electron without participating in the hydrogen bond network of the cluster; the intermolecular hydrogen bonds are formed by the water molecules only which add to the overall stability of these anionic clusters.


Journal of Chemical Physics | 2015

Energy and temperature dependent dissociation of the Na+(benzene)1,2 clusters: Importance of anharmonicity

Sujitha Kolakkandy; Amit K. Paul; Subha Pratihar; Swapnil C. Kohale; George L. Barnes; Hai Wang; William L. Hase

Chemical dynamics simulations were performed to study the unimolecular dissociation of randomly excited Na(+)(Bz) and Na(+)(Bz)2 clusters; Bz = benzene. The simulations were performed at constant energy, and temperatures in the range of 1200-2200 K relevant to combustion, using an analytic potential energy surface (PES) derived in part from MP2/6-311+G* calculations. The clusters decompose with exponential probabilities, consistent with RRKM unimolecular rate theory. Analyses show that intramolecular vibrational energy redistribution is sufficiently rapid within the clusters that their unimolecular dynamics is intrinsically RRKM. Arrhenius parameters, determined from the simulations of the clusters, are unusual in that Ea is ∼10 kcal/mol lower the Na(+)(Bz) → Na(+) + Bz dissociation energy and the A-factor is approximately two orders-of-magnitude too small. Analyses indicate that temperature dependent anharmonicity is important for the Na(+)(Bz) clusters unimolecular rate constants k(T). This is consistent with the temperature dependent anharmonicity found for the Na(+)(Bz) cluster from a Monte Carlo calculation based on the analytic PES used for the simulations. Apparently temperature dependent anharmonicity is quite important for unimolecular dissociation of the Na(+)(Bz)1,2 clusters.


Journal of Physical Chemistry B | 2014

Intermolecular Potential for Binding of Protonated Peptide Ions with Perfluorinated Hydrocarbon Surfaces

Subha Pratihar; Swapnil C. Kohale; Saulo A. Vázquez; William L. Hase

An analytic potential energy function was developed to model both short-range and long-range interactions between protonated peptide ions and perfluorinated hydrocarbon chains. The potential function is defined as a sum of two-body potentials of the Buckingham form. The parameters of the two-body potentials were obtained by fits to intermolecular potential energy curves (IPECs) calculated for CF4, which represents the F and C atoms of a perfluoroalkane chain, interacting with small molecules chosen as representatives of the main functional groups and atoms present in protonated peptide ions: specifically, CH4, NH3, NH4(+), and HCOOH. The IPECs were calculated at the MP2/aug-cc-pVTZ level of theory, with basis set superposition error (BSSE) corrections. Good fits were obtained for an energy range extending up to about 400 kcal/mol. It is shown that the pair potentials derived from the NH3/CF4 and HCOOH/CF4 fits reproduce acceptably well the intermolecular interactions in HCONH2/CF4, which indicates that the parameters obtained for the amine and carbonyl atoms may be transferable to the corresponding atoms of the amide group. The derived potential energy function may be used in chemical dynamics simulations of collisions of peptide-H(+) ions with perfluorinated hydrocarbon surfaces.


Journal of Chemical Physics | 2008

Microscopic solvation of a lithium atom in water-ammonia mixed clusters: Solvent coordination and electron localization in presence of a counterion

Subha Pratihar; Amalendu Chandra

The microsolvation structures and energetics of water-ammonia mixed clusters containing a lithium atom, i.e., Li(H(2)O)(n)(NH(3)), n = 1-5, are investigated by means of ab initio theoretical calculations. Several structural aspects such as the solvent coordination to the metal ion and binding motifs of the free valence electron of the metal are investigated. We also study the energetics aspects such as the dependence of vertical ionization energies on the cluster size, and all these structural and energetics aspects are compared to the corresponding results of previously studied anionic water-ammonia clusters without a metal ion. It is found that the Li-O and Li-N interactions play a very important role in stabilizing the lithium-water-ammonia clusters, and the presence of these metal ion-solvent interactions also affect the characteristics of electron solvation in these clusters. This is seen from the spatial distribution of the singly occupied molecular orbital (SOMO) which holds the ejected valence electron of the Li atom. For very small clusters, SOMO electron density is found to exist mainly at the vicinity of the Li atom, whereas for larger clusters, it is distributed outside the first solvation shell. The free dangling hydrogens of water and ammonia molecules are involved in capturing the SOMO electron density. In some of the conformers, OH{e}HO and OH{e}HN types of interactions are found to be present. The presence of the metal ion at the center of the cluster ensures that the ejected electron is solvated at a surface state only, whereas both surface and interiorlike states were found for the free electron in the corresponding anionic clusters without a metal ion. The vertical ionization energies of the present clusters are found to be higher than the vertical detachment energies of the corresponding anionic clusters which signify a relatively stronger binding of the free electron in the presence of the positive metal counterion. The shifts in different vibrational frequencies are also calculated for the larger clusters, and the results are discussed for some of the selective modes of water and ammonia molecules that are directly influenced by the location and hydrogen bonding state of these molecules in the clusters.


Journal of Physical Chemistry Letters | 2016

Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment.

Subha Pratihar; George L. Barnes; Julia Laskin; William L. Hase

In this Perspective, mass spectrometry experiments and chemical dynamics simulations are described that have explored the atomistic dynamics of protonated peptide ions, peptide-H(+), colliding with organic surfaces. These studies have investigated the energy transfer and fragmentation dynamics for peptide-H(+) surface-induced dissociation (SID), peptide-H(+) physisorption on the surface, soft landing (SL), and peptide-H(+) reaction with the surface, reactive landing (RL). SID provides primary structures of biological ions and information regarding their fragmentation pathways and energetics. Two SID mechanisms are found for peptide-H(+) fragmentation. A traditional mechanism in which peptide-H(+) is vibrationally excited by its collision with the surface, rebounds off the surface and then dissociates in accord with the statistical, RRKM unimolecular rate theory. The other, shattering, is a nonstatistical mechanism in which peptide-H(+) fragments as it collides with the surface, dissociating via many pathways and forming many product ions. Shattering is important for collisions with diamond and perfluorinated self-assembled monolayer (F-SAM) surfaces, increasing in importance with the peptide-H(+) collision energy. Chemical dynamics simulations also provide important mechanistic insights on SL and RL of biological ions on surfaces. The simulations indicate that SL occurs via multiple mechanisms consisting of sequences of peptide-H(+) physisorption on and penetration in the surface. SL and RL have a broad range of important applications including preparation of protein or peptide microarrays, development of biocompatible substrates and biosensors, and preparation of novel synthetic materials, including nanomaterials. An important RL mechanism is intact deposition of peptide-H(+) on the surface.

Collaboration


Dive into the Subha Pratihar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amalendu Chandra

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Kumar Paul

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Paranjothy Manikandan

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge