Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhajyoti De is active.

Publication


Featured researches published by Subhajyoti De.


Nature | 2015

Polyploidy can drive rapid adaptation in yeast

Anna Selmecki; Yosef E. Maruvka; Phillip A. Richmond; Marie Guillet; Noam Shoresh; Amber L. Sorenson; Subhajyoti De; Roy Kishony; Franziska Michor; Robin D. Dowell; David Pellman

Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.


Nature Biotechnology | 2011

DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes

Subhajyoti De; Franziska Michor

Somatic copy-number alterations (SCNA) are a hallmark of many cancer types, but the mechanistic basis underlying their genome-wide patterns remains incompletely understood. Here we integrate data on DNA replication timing, long-range interactions between genomic material, and 331,724 SCNAs from 2,792 cancer samples classified into 26 cancer types. We report that genomic regions of similar replication timing are clustered spatially in the nucleus, that the two boundaries of SCNAs tend to be found in such regions, and that regions replicated early and late display distinct patterns of frequencies of SCNA boundaries, SCNA size and a preference for deletions over insertions. We show that long-range interaction and replication timing data alone can identify a significant proportion of SCNAs in an independent test data set. We propose a model for the generation of SCNAs in cancer, suggesting that data on spatial proximity of regions replicating at the same time can be used to predict the mutational landscapes of cancer genomes.


Neuron | 2007

Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans

Katie S. Kindt; Kathleen B. Quast; Andrew C. Giles; Subhajyoti De; Dan Hendrey; Ian Nicastro; Catharine H. Rankin; William R. Schafer

Dopamine has been implicated in the modulation of diverse forms of behavioral plasticity, including appetitive learning and addiction. An important challenge is to understand how dopamines effects at the cellular level alter the properties of neural circuits to modify behavior. In the nematode C. elegans, dopamine modulates habituation of an escape reflex triggered by body touch. In the absence of food, animals habituate more rapidly than in the presence of food; this contextual information about food availability is provided by dopaminergic mechanosensory neurons that sense the presence of bacteria. We find that dopamine alters habituation kinetics by selectively modulating the touch responses of the anterior-body mechanoreceptors; this modulation involves a D1-like dopamine receptor, a Gq/PLC-beta signaling pathway, and calcium release within the touch neurons. Interestingly, the body touch mechanoreceptors can themselves excite the dopamine neurons, forming a positive feedback loop capable of integrating context and experience to modulate mechanosensory attention.


Blood | 2011

DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation.

Rita Shaknovich; Leandro Cerchietti; Lucas Tsikitas; Matthias Kormaksson; Subhajyoti De; Maria E. Figueroa; Gianna Ballon; Shao Ning Yang; Nils Weinhold; Mark Reimers; Thomas Clozel; Karin Luttrop; Tomas J. Ekström; Jared Frank; Aparna Vasanthakumar; Lucy A. Godley; Franziska Michor; Olivier Elemento; Ari Melnick

The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and the role of DNA methyltransferases in the formation of GCs. DNA methylation profiling revealed a marked shift in DNA methylation patterning in GC B cells versus resting/naive B cells. This shift included significant differential methylation of 235 genes, with concordant inverse changes in gene expression affecting most notably genes of the NFkB and MAP kinase signaling pathways. GC B cells were predominantly hypomethylated compared with naive B cells and AICDA binding sites were highly overrepresented among hypomethylated loci. GC B cells also exhibited greater DNA methylation heterogeneity than naive B cells. Among DNA methyltransferases (DNMTs), only DNMT1 was significantly up-regulated in GC B cells. Dnmt1 hypomorphic mice displayed deficient GC formation and treatment of mice with the DNA methyltransferase inhibitor decitabine resulted in failure to form GCs after immune stimulation. Notably, the GC B cells of Dnmt1 hypomorphic animals showed evidence of increased DNA damage, suggesting dual roles for DNMT1 in DNA methylation and double strand DNA break repair.


BMC Structural Biology | 2005

Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different

Subhajyoti De; Oruganty Krishnadev; Narayanaswamy Srinivasan; Nambudiry Rekha

BackgroundA polypeptide chain of a protein-protein complex is said to be obligatory if it is bound to another chain throughout its functional lifetime. Such a chain might not adopt the native fold in the unbound form. A non-obligatory polypeptide chain associates with another chain and dissociates upon molecular stimulus. Although conformational changes at the interaction interface are expected, the overall 3-D structure of the non-obligatory chain is unaltered. The present study focuses on protein-protein complexes to understand further the differences between obligatory and non-obligatory interfaces.ResultsA non-obligatory chain in a complex of known 3-D structure is recognized by its stable existence with same fold in the bound and unbound forms. On the contrary, an obligatory chain is detected by its existence only in the bound form with no evidence for the native-like fold of the chain in the unbound form. Various interfacial properties of a large number of complexes of known 3-D structures thus classified are comparatively analyzed with an aim to identify structural descriptors that distinguish these two types of interfaces. We report that the interaction patterns across the interfaces of obligatory and non-obligatory components are different and contacts made by obligatory chains are predominantly non-polar. The obligatory chains have a higher number of contacts per interface (20 ± 14 contacts per interface) than non-obligatory chains (13 ± 6 contacts per interface). The involvement of main chain atoms is higher in the case of obligatory chains (16.9 %) compared to non-obligatory chains (11.2 %). The β-sheet formation across the subunits is observed only among obligatory protein chains in the dataset. Apart from these, other features like residue preferences and interface area produce marginal differences and they may be considered collectively while distinguishing the two types of interfaces.ConclusionThese results can be useful in distinguishing the two types of interfaces observed in structures determined in large-scale in the structural genomics initiatives, especially for those multi-component protein assemblies for which the biochemical characterization is incomplete.


PLOS Genetics | 2013

Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity.

Subhajyoti De; Rita Shaknovich; Markus Riester; Olivier Elemento; Huimin Geng; Matthias Kormaksson; Yanwen Jiang; Bruce Woolcock; Nathalie A. Johnson; Jose M. Polo; Leandro Cerchietti; Randy D. Gascoyne; Ari Melnick; Franziska Michor

Despite mounting evidence that epigenetic abnormalities play a key role in cancer biology, their contributions to the malignant phenotype remain poorly understood. Here we studied genome-wide DNA methylation in normal B-cell populations and subtypes of B-cell non-Hodgkin lymphoma: follicular lymphoma and diffuse large B-cell lymphomas. These lymphomas display striking and progressive intra-tumor heterogeneity and also inter-patient heterogeneity in their cytosine methylation patterns. Epigenetic heterogeneity is initiated in normal germinal center B-cells, increases markedly with disease aggressiveness, and is associated with unfavorable clinical outcome. Moreover, patterns of abnormal methylation vary depending upon chromosomal regions, gene density and the status of neighboring genes. DNA methylation abnormalities arise via two distinct processes: i) lymphomagenic transcriptional regulators perturb promoter DNA methylation in a target gene-specific manner, and ii) aberrant epigenetic states tend to spread to neighboring promoters in the absence of CTCF insulator binding sites.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cellular crowding imposes global constraints on the chemistry and evolution of proteomes

Emmanuel D. Levy; Subhajyoti De; Sarah A. Teichmann

In living cells, functional protein–protein interactions compete with a much larger number of nonfunctional, or promiscuous, interactions. Several cellular properties contribute to avoiding unwanted protein interactions, including regulation of gene expression, cellular compartmentalization, and high specificity and affinity of functional interactions. Here we investigate whether other mechanisms exist that shape the sequence and structure of proteins to favor their correct assembly into functional protein complexes. To examine this question, we project evolutionary and cellular abundance information onto 397, 196, and 631 proteins of known 3D structure from Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens, respectively. On the basis of amino acid frequencies in interface patches versus the solvent-accessible protein surface, we define a propensity or “stickiness” scale for each of the 20 amino acids. We find that the propensity to interact in a nonspecific manner is inversely correlated with abundance. In other words, high abundance proteins have less sticky surfaces. We also find that stickiness constrains protein evolution, whereby residues in sticky surface patches are more conserved than those found in nonsticky patches. Finally, we find that the constraint imposed by stickiness on protein divergence is proportional to protein abundance, which provides mechanistic insights into the correlation between protein conservation and protein abundance. Overall, the avoidance of nonfunctional interactions significantly influences the physico-chemical and evolutionary properties of proteins. Remarkably, the effects observed are consistently larger in E. coli and S. cerevisiae than in H. sapiens, suggesting that promiscuous protein–protein interactions may be freer to accumulate in the human lineage.


Trends in Genetics | 2012

Evolution of the cancer genome.

Ondrej Podlaha; Markus Riester; Subhajyoti De; Franziska Michor

Human tumors result from an evolutionary process operating on somatic cells within tissues, whereby natural selection operates on the phenotypic variability generated by the accumulation of genetic, genomic and epigenetic alterations. This somatic evolution leads to adaptations such as increased proliferative, angiogenic, and invasive phenotypes. In this review we outline how cancer genomes are beginning to be investigated from an evolutionary perspective. We describe recent progress in the cataloging of somatic genetic and genomic alterations, and investigate the contributions of germline as well as epigenetic factors to cancer genome evolution. Finally, we outline the challenges facing researchers who investigate the processes driving the evolution of the cancer genome.


Cancer Discovery | 2012

Evolutionary Pathways in BRCA1-Associated Breast Tumors

Filipe C. Martins; Subhajyoti De; Vanessa Almendro; Mithat Gonen; So Yeon Park; Joanne L. Blum; William Herlihy; Gabrielle Ethington; Stuart J. Schnitt; Nadine Tung; Judy Garber; Katharina Fetten; Franziska Michor; Kornelia Polyak

BRCA1-associated breast tumors display loss of BRCA1 and frequent somatic mutations of PTEN and TP53. Here we describe the analysis of BRCA1, PTEN, and p53 at the single cell level in 55 BRCA1-associated breast tumors and computational methods to predict the relative temporal order of somatic events, on the basis of the frequency of cells with single or combined alterations. Although there is no obligatory order of events, we found that loss of PTEN is the most common first event and is associated with basal-like subtype, whereas in the majority of luminal tumors, mutation of TP53 occurs first and mutant PIK3CA is rarely detected. We also observed intratumor heterogeneity for the loss of wild-type BRCA1 and increased cell proliferation and centrosome amplification in the normal breast epithelium of BRCA1 mutation carriers. Our results have important implications for the design of chemopreventive and therapeutic interventions in this high-risk patient population.


Nature Communications | 2013

DNA replication timing and higher-order nuclear organization determine single nucleotide substitution patterns in cancer genomes

Lin Liu; Subhajyoti De; Franziska Michor

Single nucleotide substitutions (SNS) are a defining characteristic of cancer genomes. Many SNS in cancer genomes arise due to errors in DNA replication, which is spatio-temporally stratified. Here we propose that DNA replication patterns help shape the mutational landscapes of normal and cancer genomes. Using data on five fully sequenced cancer types and two personal genomes, we determined that the frequency of intergenic SNS is significantly higher in late DNA replication timing regions, even after controlling for a number of genomic features. Furthermore, some substitution signatures are more frequent in certain DNA replication timing zones. Finally, integrating data on higher-order nuclear organization, we found that genomic regions in close spatial proximity to late replicating domains display similar mutation spectra as the late replicating regions themselves. These data suggest that DNA replication timing together with higher-order genomic organization contribute to the patterns of SNS in normal and cancer genomes.

Collaboration


Dive into the Subhajyoti De's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah A. Teichmann

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Brent S. Pedersen

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinod Kumar Yadav

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

M. Madan Babu

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle S. Smith

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge