Subhamoy Pal
Naval Medical Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Subhamoy Pal.
Journal of Biological Chemistry | 2007
Subhamoy Pal; Raymond J. St. Leger; Louisa P. Wu
Destruxins are a class of insecticidal, anti-viral, and phytotoxic cyclic depsipeptides that are also studied for their toxicity to cancer cells. They are produced by various fungi, and a direct relationship has been established between Destruxin production and the virulence of the entomopathogen Metarhizium anisopliae. Aside from opening calcium channels, their in vivo mode of action during pathogenesis remains largely uncharacterized. To better understand the effects of a Destruxin, we looked at changes in gene expression following injection of Destruxin A into the fruit fly Drosophila melanogaster. Microarray results revealed reduced expression of various antimicrobial peptides that play a major role in the humoral immune response of the fly. Flies co-injected with a non-lethal dose of Destruxin A and the normally innocuous Gram-negative bacteria Escherichia coli, showed increased mortality and an accompanying increase in bacterial titers. Mortality due to sepsis was rescued through ectopic activation of components in the IMD pathway, one of two signal transduction pathways that are responsible for antimicrobial peptide induction. These results demonstrate a novel role for Destruxin A in specific suppression of the humoral immune response in insects.
PLOS ONE | 2014
Subhamoy Pal; Allison L. Dauner; Indrani Mitra; Brett M. Forshey; Paquita García; Amy C. Morrison; Eric S. Halsey; Tadeusz J. Kochel; Shuenn-Jue L. Wu
Background Early diagnosis of dengue virus (DENV) infection can improve clinical outcomes by ensuring close follow-up, initiating appropriate supportive therapies and raising awareness to the potential of hemorrhage or shock. Non-structural glycoprotein-1 (NS1) has proven to be a useful biomarker for early diagnosis of dengue. A number of rapid diagnostic tests (RDTs) and enzyme-linked immunosorbent assays (ELISAs) targeting NS1 antigen (Ag) are now commercially available. Here we evaluated these tests using a well-characterized panel of clinical samples to determine their effectiveness for early diagnosis. Methodology/Principal Findings Retrospective samples from South America were used to evaluate the following tests: (i) “Dengue NS1 Ag STRIP” and (ii) “Platelia Dengue NS1 Ag ELISA” (Bio-Rad, France), (iii) “Dengue NS1 Detect Rapid Test (1st Generation)” and (iv) “DENV Detect NS1 ELISA” (InBios International, United States), (v) “Panbio Dengue Early Rapid (1st generation)” (vi) “Panbio Dengue Early ELISA (2nd generation)” and (vii) “SD Bioline Dengue NS1 Ag Rapid Test” (Alere, United States). Overall, the sensitivity of the RDTs ranged from 71.9%–79.1% while the sensitivity of the ELISAs varied between 85.6–95.9%, using virus isolation as the reference method. Most tests had lower sensitivity for DENV-4 relative to the other three serotypes, were less sensitive in detecting secondary infections, and appeared to be most sensitive on Day 3–4 post symptom onset. The specificity of all evaluated tests ranged from 95%–100%. Conclusions ELISAs had greater overall sensitivity than RDTs. In conjunction with other parameters, the performance data can help determine which dengue diagnostics should be used during the first few days of illness, when the patients are most likely to present to a clinic seeking care.
Fly | 2009
Subhamoy Pal; Louisa P. Wu
Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal β‑1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for directly facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.
Virology | 2011
Peifang Sun; Karolis Bauza; Subhamoy Pal; Zhaodong Liang; Shuenn-Jue Wu; Charmagne G. Beckett; Timothy Burgess; Kevin R. Porter
Human monocytes are susceptible to dengue virus (DV) infection through an FcR-dependent pathway known as antibody-dependent enhancement (ADE). In this study, infection enhancement was observed when purified monocytes were infected with DV serotypes in the presence of serially diluted immune serum antibodies. Analyzing binding of the DV-antibody immune complexes to monocytes by quantifying the amount of viruses attached to monocytes, we found that binding did not correlate with the input amount of antibodies; rather, it peaked at suboptimal antibody concentrations, correlating with the observed infection enhancement. These results suggested that immune complexes are involved in hindering DV from binding to FcR-bearing cells; when such a protective feature is weakened, enhancement of viral attachment and ADE are observed. Further, increased cytokine production (TNF-alpha and IFN-alpha), and costimulatory marker expression (CD86 and CD40), were found to be associated with infection enhancement, suggesting a pathological role of ADE-affected monocytes in dengue hemorrhagic diseases.
Advances in Experimental Medicine and Biology | 2009
Subhamoy Pal; Louisa P. Wu
Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal beta-1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for directly facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.
Journal of Clinical Microbiology | 2015
Subhamoy Pal; Allison L. Dauner; Andrea Valks; Brett M. Forshey; Kanya C. Long; Butsaya Thaisomboonsuk; Gloria Sierra; Victor Picos; Sara Talmage; Amy C. Morrison; Eric S. Halsey; Guillermo Comach; Chadwick Yasuda; Michael J. Loeffelholz; Richard G. Jarman; Stefan Fernandez; Ung Sam An; Tadeusz J. Kochel; Louis E. Jasper; Shuenn Jue L Wu
ABSTRACT We evaluated four dengue diagnostic devices from Alere, including the SD Bioline Dengue Duo (nonstructural [NS] 1 Ag and IgG/IgM), the Panbio Dengue Duo Cassette (IgM/IgG) rapid diagnostic tests (RDTs), and the Panbio dengue IgM and IgG capture enzyme-linked immunosorbent assays (ELISAs) in a prospective, controlled, multicenter study in Peru, Venezuela, Cambodia, and the United States, using samples from 1,021 febrile individuals. Archived, well-characterized samples from an additional 135 febrile individuals from Thailand were also used. Reference testing was performed on all samples using an algorithm involving virus isolation, in-house IgM and IgG capture ELISAs, and plaque reduction neutralization tests (PRNT) to determine the infection status of the individual. The primary endpoints were the clinical sensitivities and specificities of these devices. The SD Bioline Dengue Duo had an overall sensitivity of 87.3% (95% confidence interval [CI], 84.1 to 90.2%) and specificity of 86.8% (95% CI, 83.9 to 89.3%) during the first 14 days post-symptom onset (p.s.o.). The Panbio Dengue Duo Cassette demonstrated a sensitivity of 92.1% (87.8 to 95.2%) and specificity of 62.2% (54.5 to 69.5%) during days 4 to 14 p.s.o. The Panbio IgM capture ELISA had a sensitivity of 87.6% (82.7 to 91.4%) and specificity of 88.1% (82.2 to 92.6%) during days 4 to 14 p.s.o. Finally, the Panbio IgG capture ELISA had a sensitivity of 69.6% (62.1 to 76.4%) and a specificity of 88.4% (82.6 to 92.8%) during days 4 to 14 p.s.o. for identification of secondary dengue infections. This multicountry prospective study resulted in reliable real-world performance data that will facilitate data-driven laboratory test choices for managing patient care during dengue outbreaks.
Diagnostic Microbiology and Infectious Disease | 2015
Allison L. Dauner; Indrani Mitra; Theron Gilliland; Sajeewane Seales; Subhamoy Pal; Shih-Chun Yang; Carolina Guevara; Jiann-Hwa Chen; Yung-Chuan Liu; Tadeusz J. Kochel; Shuenn-Jue L. Wu
Abstract During dengue outbreaks, acute diagnosis at the patients point of need followed by appropriate supportive therapy reduces morbidity and mortality. To facilitate needed diagnosis, we developed and optimized a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay that detects all 4 serotypes of dengue virus (DENV). We used a quencher to reduce nonspecific amplification. The assay does not require expensive thermocyclers, utilizing a simple water bath to maintain the reaction at 63°C. Results can be visualized using UV fluorescence, handheld readers, or lateral flow immunochromatographic tests. We report a sensitivity of 86.3% (95% confidence interval [CI], 72.7–94.8%) and specificity of 93.0% (95% CI, 83.0–98.1%) using a panel of clinical specimens characterized by DENV quantitative reverse transcription–polymerase chain reaction. This pan-serotype DENV RT-LAMP can be adapted to field-expedient formats where it can provide actionable diagnosis near the patients point of need.
American Journal of Tropical Medicine and Hygiene | 2015
Allison L. Dauner; Theron Gilliland; Indrani Mitra; Subhamoy Pal; Amy C. Morrison; Robert D. Hontz; Shuenn-Jue L. Wu
Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6–97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing.
The Journal of Infectious Diseases | 2018
Thomas C. Luke; Richard S. Bennett; Dawn M Gerhardt; Tracey Burdette; Elena Postnikova; Steven Mazur; Anna N. Honko; Nicholas Oberlander; Russell Byrum; Dan R. Ragland; Marisa St. Claire; Krisztina Janosko; Gale Smith; Gregory M. Glenn; Jay W. Hooper; John M. Dye; Subhamoy Pal; Kimberly A. Bishop-Lilly; Theron Hamilton; K. G. Frey; Laura Bollinger; Jiro Wada; Hua Wu; Jin-an Jiao; Gene G. Olinger; Bronwyn M. Gunn; Galit Alter; Surender Khurana; Lisa E. Hensley; Eddie Sullivan
Abstract Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants. SAB-139 potently activates natural killer cells, monocytes, and peripheral blood mononuclear cells and has high-binding avidity demonstrated by surface plasmon resonance. SAB-139 has similar concentrations of galactose-α-1,3-galactose carbohydrates compared with human-derived intravenous Ig, and the IgG1 subclass antibody is predominant. All rhesus macaques infected with Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 and treated with sufficient SAB-139 at 1 day (n = 6) or 3 days (n = 6) postinfection survived versus 0% of controls. This study demonstrates that Tc-bovines can produce pathogen-specific human Ig to prevent and/or treat patients when an emerging infectious disease either threatens to or becomes an epidemic.
Military Medicine | 2016
Subhamoy Pal; Louis E. Jasper; Kendra L. Lawrence; Maureen Walter; Theron Gilliland; Allison L. Dauner; Thomas J. Palys; Shuenn-Jue L. Wu
Dengue, one of the most widespread infectious diseases, has affected U.S. military readiness throughout history. We explored the dengue diagnosis capability gap by circulating a questionnaire among military end users to determine in what capacity diagnostic test results are needed and how these results would be used at various roles of care in the Military Health System. Results were used to generate target product profiles for potential diagnostic tests. We determined that at far-forward locations, diagnostic tests need to be rugged and easy to use and are primarily needed to inform medical evacuation decisions. In mobile or fixed hospitals, diagnostics can be less portable but must be accurate enough to inform patient care decisions reliably. We then evaluated the suitability of using rapid diagnostic tests and enzyme-linked immunosorbent assays based on published performance characteristics, and we used a model to determine positive and negative predictive values in certain simulated deployments. In far-forward settings, a rapid diagnostic test comprising both antigen- and antibody-based detection can fulfill the capability gap with reasonable accuracy, whereas at higher roles of care immunoglobulin M-enzyme-linked immunosorbent assay was determined to be the most suitable option.