Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhash Chandra Bhattacharya is active.

Publication


Featured researches published by Subhash Chandra Bhattacharya.


Journal of Physical Chemistry B | 2009

Deciphering the Fluorescence Resonance Energy Transfer Signature of 3-Pyrazolyl 2-Pyrazoline in Transport Proteinous Environment

Paltu Banerjee; Smritimoy Pramanik; Arindam Sarkar; Subhash Chandra Bhattacharya

In the present investigation, an attempt has been made to study the interaction of newly synthesized bioactive compound 3-pyrazolyl 2-pyrazoline (PZ) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA) employing steady state and time-resolved fluorescence technique. We have focused on fluorescence resonance energy transfer (FRET) between excited tryptophan in transport proteins to transport-proteins-bound PZ. An efficient Forster-type resonance energy transfer from the tryptophan residues to PZ indicates that PZ binds in the vicinity of the tryptophan residue. Binding of protein to that bioactive compound without changing conformation of primary and secondary structure of protein has been monitored using circular dichroism (CD) study.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2008

Spectroscopic investigation of 3-pyrazolyl 2-pyrazoline derivative in homogeneous solvents.

Smritimoy Pramanik; Paltu Banerjee; Arindam Sarkar; Attreyee Mukherjee; Kumar K. Mahalanabis; Subhash Chandra Bhattacharya

How solvent conditions such as solvent polarity and hydrogen-bonding affect the fluorescence of a newly synthesized 3-pyrazolyl 2-pyrazoline derivative (Pyz) having pharmaceutical activity has been explored. The solvatochromic effect of Pyz is due to a change in dipole moment of the compound in the excited state. The relaxation of S1 state is perturbed in hydrogen-bonding solvents. The fluorescence properties of the systems are strongly dependent on the polarity of the media. The non-radiative relaxation process is facilitated by an increase in the polarity of the media. The photophysical response of Pyz in different solvents has been explained considering solute-solvent interactions.


Journal of Physical Chemistry B | 2008

Modulated photophysics of 3-pyrazolyl-2-pyrazoline derivative entrapped in micellar assembly.

Paltu Banerjee; Smritimoy Pramanik; Arindam Sarkar; Subhash Chandra Bhattacharya

The photophysical behavior of 3-pyrazolyl-2-pyrazoline derivative (PZ), a newly synthesized biologically active compound has been studied in micellar solutions of anionic sodium dodecyl sulfate (SDS), cationic cetyl trimethylammonium bromide (CTAB) and nonionic p- tert-octylphenoxy polyoxyethanol (Triton X-100, TX-100) micelle using steady state and time-resolved fluorescence spectroscopy technique. Influence of the micelles on the photophysics of PZ has also been investigated using different approaches. The location of the fluorophore PZ in the micelle has been identified by cetyl pyridinium chloride (CpCl) induced fluorescence quenching and micropolarity surrounding that fluorophore in micellar solution. The effect of urea on the steady state fluorescence and relaxation dynamics of the micelle bound probe has also been observed. The results have been interpreted in terms of the model that urea displaces water molecules from the micellar interface and the consequent destabilization leads to the expulsion of the probe molecules from the interfacial region. An attempt has been made to determine probe sensing microviscosities for these micellar microenvironments in the light of average reorientation times of the probe PZ.


Journal of Physical Chemistry A | 2011

Tunable solvatochromic response of newly synthesized antioxidative naphthalimide derivatives: intramolecular charge transfer associated with hydrogen bonding effect.

Sayaree Dhar; Somnath Singha Roy; Dipak Kumar Rana; Sudin Bhattacharya; Sumanta Bhattacharya; Subhash Chandra Bhattacharya

The solvatochromic behavior of two newly synthesized naphthalimide derivatives (I and II) which have potential antioxidative activities in anticarcinogenic drug development treatment, has been monitored in protic and aprotic solvents of different polarity applying steady-state and time-resolved fluorescence techniques. The compounds exhibit unique photophysical response in different solvent environments. The spectral trends do not appear to originate only from changes in the solvent polarity but also indicate that hydrogen bonding interactions and intramolecular charge transfer (ICT) influence the energy of electronic excitation of the compounds. Incorporation of an amino group at C(4) position of the naphthalimide ring in II makes it behave differently from I in terms of spectral characterization and fluorescence efficacy of the systems. The nonradiative relaxation process of the compounds is governed by medium polarity. The ground state geometry, lowest energy transition, and the UV-vis absorption energy of the compounds were studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31G* level, which showed that the calculated outcomes were in good agreement with experimental data.


Journal of Physical Chemistry A | 2011

Dual intramolecular hydrogen bond as a switch for inducing ground and excited state intramolecular double proton transfer in doxorubicin: an excitation wavelength dependence study.

Dipak Kumar Rana; Sayaree Dhar; Arindam Sarkar; Subhash Chandra Bhattacharya

This paper investigates how solution conditions, especially solvent polarity and hydrogen bonding, influence the fluorescence of an anticancer drug, doxorubicin hydrochloride (DOX). When excited at 480 nm, this molecule shows single fluorescence. However, when excited at 346 nm, it shows dual fluorescence. The ground and excited state intramolecular double proton transfer in DOX has been observed and investigated to shed light on their corresponding spectroscopy and dynamics in different protic and aprotic solvents. An increase in pH results in enhancement of emission from the ionic conformer with parallel dwindling of emission of the neutral species. Based on the experimental and theoretical studies on DOX, a ground and excited state intramolecular double proton transfer mechanism is proposed to explain the unusual excitation-dependent dual fluorescence of DOX.


Journal of Colloid and Interface Science | 2009

Supersaturation driven tailoring of photoluminescence efficiency and size distribution: A simplified aqueous approach for producing high-quality, biocompatible quantum dots

Amiya Priyam; S. Ghosh; Subhash Chandra Bhattacharya; Abhijit Saha

Supersaturation was found to play a pivotal role during nanoparticle-synthesis and its subtle variation helped achieve two prime objectives: (a) high photoluminescence quantum efficiency (PLQE) and (b) narrow size distribution, thereby obviating the need for post-preparative treatments. Degree of supersaturation of initial synthetic mixture was varied by changing the concentration of reagents while keeping their molar ratio constant at 1:2.5:0.5 for [Cd(2+)]:[cysteine]:[chalcogenide]. An eight-fold increase in supersaturation caused a sharp focusing of size distribution by 64% for CdS quantum dots (QDs). The as-prepared CdS and CdTe QDs were found to have size distribution as low as 4% at higher supersaturation. For a four-fold increase in supersaturation, PLQE of as-prepared CdTe QDs (4.3 nm) rose by 5 times to a remarkably high value of 54%. The focusing of size distribution with increasing supersaturation was found to work well even in the absence of any stabilizer. A substantial overlap of nucleation and growth was found at low supersaturation (0.5S(CdTe)), whereas a good separation of the two events is achieved at a higher supersaturation (4S(CdTe)). This study provides a simplified aqueous route for producing highly monodisperse, photoluminescent and biocompatible nanoparticles.


Journal of Physical Chemistry B | 2013

Self-aggregation of MEGA-9 (N-nonanoyl-N-methyl-D-glucamine) in aqueous medium: physicochemistry of interfacial and solution behaviors with special reference to formation energetics and micelle microenvironment.

Animesh Pan; Soumya Sundar Mati; Bappaditya Naskar; Subhash Chandra Bhattacharya; Satya P. Moulik

Self-aggregation of MEGA-9 (N-nonanoyl-N-methyl-D-glucamine), a nonionic sugar-based surfactant, was studied with respect to the effect of salt (NaCl) and ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) on its critical micelle concentration (cmc), aggregation number, hydrodynamic dimensions, energetics of micellization, and micellar microenvironment. Fluorimetry (both steady state and time resolved) was used to understand the microenvironments under the influence of additives. NaCl was found to decrease cmc, increase aggregation number (N), increase micellar size, and decrease enthalpy of micelle formation; the IL effect on the parameters was mostly opposite. The microscopic properties of micelles were probed using two fluorophores: one nonpolar C-153 (2,3,5,6-1H,4H-tetrahydro-8-trifluormethylquinolizino-(9,9a,1-gh)coumarin) and the other fairly polar ANS (8-anilinonaphthalene-1-sulfonate); they delivered information on the palisade layer and the peripheral region of the micelle interface, respectively. Energy of activation and entropy of activation of the dynamics of the probes were evaluated from their decay time, lifetime, and rotational movements in the regions of residency in the micelles. Density functional theory (DFT) calculations showed that the ternary combination MEGA-9/IL/H2O had the maximum interaction energy compared to any of the binary combinations. Thus, the ionic liquid reduced MEGA-9 self-association to a large extent.


Journal of Dispersion Science and Technology | 2005

Characterization of Binary Surfactant Mixtures (Cetylpyridinium Chloride and Tween 60) in an Aqueous Medium

Pijus Kanti Khatua; Soumen Ghosh; Sujit Kumar Ghosh; Subhash Chandra Bhattacharya

Abstract Micellar properties of the binary surfactant mixtures of cetylpyridinium chloride (CPC) and polyoxyethylene (20) sorbitan monostearate (Tween‐60) have been investigated in detail using tensiometric, conductometric, spectrophotometric, and fluorimetric techniques. The critical micelle concentration (CMC), counterion binding, interfacial adsorption, energetics of micellization, and micellar dielectric constant have been evaluated. The theories of Clint, Motomura, Rubingh, and Sarmoria, Puvvada and Blankschtein have been followed to understand the CMC, composition, activity coefficients, and synergism of the binary surfactant systems.


Journal of Physical Chemistry B | 2014

Preferential molecular encapsulation of an ICT fluorescence probe in the supramolecular cage of cucurbit[7]uril and β-cyclodextrin: an experimental and theoretical approach.

Anuva Samanta; Nikhil Guchhait; Subhash Chandra Bhattacharya

Supramolecular interaction between an intramolecular charge transfer (ICT) probe, N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN), and two well-recognized macrocyclic hosts, cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD), has been studied in aqueous medium by absorption, emission, time-resolved measurements, and (1)H NMR spectroscopic methods. The changes in the profiles of the fluorescence spectra illustrate significant modifications in fluorescence intensity, decay time, and quantum yield upon confinement of probe within the hydrophobic cavity of the hosts. Using the Benesi-Hildebrand relationship, the stoichiometric ratio as well as the binding constant of the host-guest complexation has been estimated. The stable inclusion complexes of the probe with different hosts have been supported by DFT and ONIOM based quantum chemical calculations. These methods of measurement establish that the acceptor group of the probe resides inside the hydrophobic cavity of the macrocycle. The competitive binding of metal ions and cationic surfactants to CB7 has been excellently mapped with this guest fluorosensor.


RSC Advances | 2013

Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis

Soumyadipta Rakshit; Sayantani Chall; Soumya Sundar Mati; Anirban Roychowdhury; Satya P. Moulik; Subhash Chandra Bhattacharya

The present work provides an effective methodology for controlled room-temperature aqueous synthesis of nickel oxalate (NiOX) nanosheets and nanoflakes in the presence of anion rich self-assembled bilayers of catanionic surfactant comprising of anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB). Encouragingly alteration of the CTAB/SDS ratio played an extraordinary role to form nanoflakes and nanosheets of NiOX. Our synthetic approach is combined with calcination to produce antiferromagnetic spherical and hexagonal nickel oxide (NiO) nanoparticles (NPs) as the end product. Synthesized nanostructured NiOX and NiO were characterized by X-ray diffraction study (XRD), energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM studies illustrated that spherical NiO NPs have an average size around 5–10 nm and that of hexagonal NiO NPs have average width of about 22–27 nm. Temperature and field dependent magnetic properties of spherical and hexagonal NiO nanomaterials (NMs) were measured by using a SQUID magnetometer which revealed canted antiferromagnetic and spin glass nature, respectively. In addition, we report photocatalytic activity of NiO NMs, investigated on the photodegradation of phenol under ambient conditions, and as expected, the NiO having largest surface area showed best catalytic efficiency. This biomimetic catanionic surfactant inspired approach which require only metal ions as reactants have a definite potential towards an alternative, simple way of synthesizing metal oxide NMs.

Collaboration


Dive into the Subhash Chandra Bhattacharya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sayantani Chall

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge