Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhash K. Das is active.

Publication


Featured researches published by Subhash K. Das.


Journal of the American Heart Association | 2013

Loss of Apelin Exacerbates Myocardial Infarction Adverse Remodeling and Ischemia-reperfusion Injury: Therapeutic Potential of Synthetic Apelin Analogues

Wang Wang; Shaun M. K. McKinnie; Vaibhav B. Patel; George Haddad; Zuocheng Wang; Pavel Zhabyeyev; Subhash K. Das; Ratnadeep Basu; Brent A. McLean; Vijay Kandalam; Josef M. Penninger; Zamaneh Kassiri; John C. Vederas; Allan G. Murray; Gavin Y. Oudit

Background Coronary artery disease leading to myocardial ischemia is the most common cause of heart failure. Apelin (APLN), the endogenous peptide ligand of the APJ receptor, has emerged as a novel regulator of the cardiovascular system. Methods and Results Here we show a critical role of APLN in myocardial infarction (MI) and ischemia‐reperfusion (IR) injury in patients and animal models. Myocardial APLN levels were reduced in patients with ischemic heart failure. Loss of APLN increased MI‐related mortality, infarct size, and inflammation with drastic reductions in prosurvival pathways resulting in greater systolic dysfunction and heart failure. APLN deficiency decreased vascular sprouting, impaired sprouting of human endothelial progenitor cells, and compromised in vivo myocardial angiogenesis. Lack of APLN enhanced susceptibility to ischemic injury and compromised functional recovery following ex vivo and in vivo IR injury. We designed and synthesized two novel APLN analogues resistant to angiotensin converting enzyme 2 cleavage and identified one analogue, which mimicked the function of APLN, to be markedly protective against ex vivo and in vivo myocardial IR injury linked to greater activation of survival pathways and promotion of angiogenesis. Conclusions APLN is a critical regulator of the myocardial response to infarction and ischemia and pharmacologically targeting this pathway is feasible and represents a new class of potential therapeutic agents.


Circulation Research | 2012

Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular Dysfunction A Critical Role of the Angiotensin II/AT1 Receptor Axis

Vaibhav B. Patel; Sreedhar Bodiga; Ratnadeep Basu; Subhash K. Das; Wang Wang; Zuocheng Wang; Jennifer Lo; Maria B. Grant; Jiu-Chang Zhong; Zamaneh Kassiri; Gavin Y. Oudit

Rationale: Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. Objective: To define the role of ACE2 in diabetic cardiovascular complications. Methods and Results: We used the well-validated Akita mice, a model of human diabetes, and generated double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2−/y). Diabetic state was associated with increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system. Conclusions: Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular complications.


Circulation-heart Failure | 2012

Agonist-Induced Hypertrophy and Diastolic Dysfunction Are Associated With Selective Reduction in Glucose Oxidation A Metabolic Contribution to Heart Failure With Normal Ejection Fraction

Jun Mori; Ratnadeep Basu; Brent A. McLean; Subhash K. Das; Liyan Zhang; Vaibhav B. Patel; Cory S. Wagg; Zamaneh Kassiri; Gary D. Lopaschuk; Gavin Y. Oudit

Background—Activation of the renin-angiotensin and sympathetic nervous systems may alter the cardiac energy substrate preference, thereby contributing to the progression of heart failure with normal ejection fraction. We assessed the qualitative and quantitative effects of angiotensin II (Ang II) and the &agr;-adrenergic agonist, phenylephrine (PE), on cardiac energy metabolism in experimental models of hypertrophy and diastolic dysfunction and the role of the Ang II type 1 receptor. Methods and Results—Ang II (1.5 mg·kg−1·day−1) or PE (40 mg·kg−1·day−1) was administered to 9-week-old male C57/BL6 wild-type mice for 14 days via implanted microosmotic pumps. Echocardiography showed concentric hypertrophy and diastolic dysfunction, with preserved systolic function in Ang II- and PE-treated mice. Ang II induced marked reduction in cardiac glucose oxidation and lactate oxidation, with no change in glycolysis and fatty acid &bgr;-oxidation. Tricarboxylic acid acetyl coenzyme A production and ATP production were reduced in response to Ang II. Cardiac pyruvate dehydrogenase kinase 4 expression was upregulated by Ang II and PE, resulting in a reduction in the pyruvate dehydrogenase activity, the rate-limiting step for carbohydrate oxidation. Pyruvate dehydrogenase kinase 4 upregulation correlated with the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II. Ang II type 1 receptor blockade normalized the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway and prevented the reduction in glucose oxidation but increased fatty acid oxidation. Conclusions—Ang II- and PE-induced hypertrophy and diastolic dysfunction is associated with reduced glucose oxidation because of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F–induced upregulation of pyruvate dehydrogenase kinase 4, and targeting these pathways may provide novel therapy for heart failure with normal ejection fraction.


Hypertension | 2012

Cardioprotective Effects Mediated by Angiotensin II Type 1 Receptor Blockade and Enhancing Angiotensin 1-7 in Experimental Heart Failure in Angiotensin-Converting Enzyme 2–Null Mice

Vaibhav B. Patel; Sreedhar Bodiga; Dong Fan; Subhash K. Das; Zuocheng Wang; Wang Wang; Ratnadeep Basu; Jiu-Chang Zhong; Zamaneh Kassiri; Gavin Y. Oudit

Loss of angiotensin (Ang)-converting enzyme 2 (ACE2) and inability to metabolize Ang II to Ang 1-7 perpetuate the actions of Ang II after biomechanical stress and exacerbate early adverse myocardial remodeling. Ang receptor blockers are known to antagonize the effect of Ang II by blocking Ang II type 1 receptor (AT1R) and also by upregulating the ACE2 expression. We directly compare the benefits of AT1R blockade versus enhancing Ang 1-7 action in pressure-overload–induced heart failure in ACE2 knockout mice. AT1R blockade and Ang 1-7 both resulted in marked recovery of systolic dysfunction in pressure-overloaded ACE2-null mice. Similarly, both therapies attenuated the increase in NADPH oxidase activation by downregulating the expression of Nox2 and p47phox subunits and also by limiting the p47phox phosphorylation. Biomechanical stress-induced increase in protein kinase C-&agr; expression and phosphorylation of extracellular signal–regulated kinase 1/2, signal transducer and activator of transcription 3, Akt, and glycogen synthase kinase 3&bgr; were normalized by irbesartan and Ang 1-7. Ang receptor blocker and Ang 1-7 effectively reduced matrix metalloproteinase 2 activation and matrix metalloproteinase 9 levels. Ang II–mediated cellular effects in cultured adult cardiomyocytes and cardiofibrolasts isolated from pressure-overloaded ACE2-null hearts were inhibited to similar degree by AT1R blockade and stimulation with Ang 1-7. Thus, treatment with the AT1R blocker irbesartan and Ang 1-7 prevented the cardiac hypertrophy and improved cardiac remodeling in pressure-overloaded ACE2-null mice by suppressing NADPH oxidase and normalizing pathological signaling pathways.


Circulation Research | 2013

Loss of p47phox Subunit Enhances Susceptibility to Biomechanical Stress and Heart Failure Because of Dysregulation of Cortactin and Actin Filaments

Vaibhav B. Patel; Zuocheng Wang; Dong Fan; Pavel Zhabyeyev; Ratnadeep Basu; Subhash K. Das; Wang Wang; Jessica DesAulniers; Steven M. Holland; Zamaneh Kassiri; Gavin Y. Oudit

Rationale: The classic phagocyte nicotinamide adenine dinucleotide phosphate oxidase (gp91phox or Nox2) is expressed in the heart. Nox2 activation requires membrane translocation of the p47phox subunit and is linked to heart failure. We hypothesized that loss of p47phox subunit will result in decreased reactive oxygen species production and resistance to heart failure. Objective: To define the role of p47phox in pressure overload–induced biomechanical stress. Methods and Results: Eight-week-old male p47phox null (p47phox knockout [KO]), Nox2 null (Nox2KO), and wild-type mice were subjected to transverse aortic constriction–induced pressure overload. Contrary to our hypothesis, p47phoxKO mice showed markedly worsened systolic dysfunction in response to pressure overload at 5 and 9 weeks after transverse aortic constriction compared with wild-type–transverse aortic constriction mice. We found that biomechanical stress upregulated N-cadherin and &bgr;-catenin in p47phoxKO hearts but disrupted the actin filament cytoskeleton and reduced phosphorylation of focal adhesion kinase. p47phox interacts with cytosolic cortactin by coimmunoprecipitation and double immunofluorescence staining in murine and human hearts and translocated to the membrane on biomechanical stress where cortactin interacted with N-cadherin, resulting in adaptive cytoskeletal remodeling. However, p47phoxKO hearts showed impaired interaction of cortactin with N-cadherin, resulting in loss of biomechanical stress–induced actin polymerization and cytoskeletal remodeling. In contrast, Nox2 does not interact with cortactin, and Nox2-deficient hearts were protected from pressure overload–induced adverse myocardial and intracellular cytoskeletal remodeling. Conclusions: We showed a novel role of p47phox subunit beyond and independent of nicotinamide adenine dinucleotide phosphate oxidase activity as a regulator of cortactin and adaptive cytoskeletal remodeling, leading to a paradoxically enhanced susceptibility to biomechanical stress and heart failure.


Circulation Research | 2013

Loss of p47phox Subunit Enhances Susceptibility to Biomechanical Stress and Heart Failure due to Dysregulation of Cortactin and Actin Filaments

Vaibhav B. Patel; Zuocheng Wang; Dong Fan; Pavel Zhabyeyev; Ratnadeep Basu; Subhash K. Das; Wang Wang; Jessica DesAulniers; Steven M. Holland; Zamaneh Kassiri; Gavin Y. Oudit

Rationale: The classic phagocyte nicotinamide adenine dinucleotide phosphate oxidase (gp91phox or Nox2) is expressed in the heart. Nox2 activation requires membrane translocation of the p47phox subunit and is linked to heart failure. We hypothesized that loss of p47phox subunit will result in decreased reactive oxygen species production and resistance to heart failure. Objective: To define the role of p47phox in pressure overload–induced biomechanical stress. Methods and Results: Eight-week-old male p47phox null (p47phox knockout [KO]), Nox2 null (Nox2KO), and wild-type mice were subjected to transverse aortic constriction–induced pressure overload. Contrary to our hypothesis, p47phoxKO mice showed markedly worsened systolic dysfunction in response to pressure overload at 5 and 9 weeks after transverse aortic constriction compared with wild-type–transverse aortic constriction mice. We found that biomechanical stress upregulated N-cadherin and &bgr;-catenin in p47phoxKO hearts but disrupted the actin filament cytoskeleton and reduced phosphorylation of focal adhesion kinase. p47phox interacts with cytosolic cortactin by coimmunoprecipitation and double immunofluorescence staining in murine and human hearts and translocated to the membrane on biomechanical stress where cortactin interacted with N-cadherin, resulting in adaptive cytoskeletal remodeling. However, p47phoxKO hearts showed impaired interaction of cortactin with N-cadherin, resulting in loss of biomechanical stress–induced actin polymerization and cytoskeletal remodeling. In contrast, Nox2 does not interact with cortactin, and Nox2-deficient hearts were protected from pressure overload–induced adverse myocardial and intracellular cytoskeletal remodeling. Conclusions: We showed a novel role of p47phox subunit beyond and independent of nicotinamide adenine dinucleotide phosphate oxidase activity as a regulator of cortactin and adaptive cytoskeletal remodeling, leading to a paradoxically enhanced susceptibility to biomechanical stress and heart failure.


Circulation-heart Failure | 2015

Resveratrol Treatment of Mice with Pressure Overload-Induced Heart Failure Improves Diastolic Function and Cardiac Energy Metabolism

Miranda M. Sung; Subhash K. Das; Jody Levasseur; Nikole J. Byrne; David Fung; Ty T. Kim; Grant Masson; Jamie Boisvenue; Carrie-Lynn M. Soltys; Gavin Y. Oudit; Jason R. B. Dyck

Background—Although resveratrol has multiple beneficial cardiovascular effects, whether resveratrol can be used for the treatment and management of heart failure (HF) remains unclear. In the current study, we determined whether resveratrol treatment of mice with established HF could lessen the detrimental phenotype associated with pressure-overload–induced HF and identified physiological and molecular mechanisms contributing to this. Methods and Results—C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks post surgery, a cohort of mice with established HF (% ejection fraction <45) was administered resveratrol (≈320 mg/kg per day). Despite a lack of improvement in ejection fraction, resveratrol treatment significantly increased median survival of mice with HF, lessened cardiac fibrosis, reduced gene expression of several disease markers for hypertrophy and extracellular matrix remodeling that were upregulated in HF, promoted beneficial remodeling, and improved diastolic function. Resveratrol treatment of mice with established HF also restored the levels of mitochondrial oxidative phosphorylation complexes, restored cardiac AMP-activated protein kinase activation, and improved myocardial insulin sensitivity to promote glucose metabolism and significantly improved myocardial energetic status. Finally, noncardiac symptoms of HF, such as peripheral insulin sensitivity, vascular function, and physical activity, were improved with resveratrol treatment. Conclusions—Resveratrol treatment of mice with established HF lessens the severity of the HF phenotype by lessening cardiac fibrosis, improving molecular and structural remodeling of the heart, and enhancing diastolic function, vascular function, and energy metabolism.


Journal of Biological Chemistry | 2012

Loss of Timp3 Gene Leads to Abdominal Aortic Aneurysm Formation in Response to Angiotensin II

Ratnadeep Basu; Dong Fan; Vijay Kandalam; Jiwon Lee; Subhash K. Das; Xiuhua Wang; Troy A. Baldwin; Gavin Y. Oudit; Zamaneh Kassiri

Background: TIMP3 is ECM-bound and is implicated in patients with abdominal aortic aneurysm (AAA). Results: Timp3 deficiency triggers AAA in response to Ang II. Additional deletion of Mmp2 exacerbated AAA with enhanced inflammation. Broad spectrum MMP inhibition prevented AAA in both genotypes. Conclusion: TIMP3 is protective against Ang II-mediated adverse remodeling. Significance: Replenishment of TIMP3 in aneurysmal aorta could prevent aneurysm expansion and rupture. Aortic aneurysm is dilation of the aorta primarily due to degradation of the aortic wall extracellular matrix (ECM). Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs), the proteases that degrade the ECM. Timp3 is the only ECM-bound Timp, and its levels are altered in the aorta from patients with abdominal aortic aneurysm (AAA). We investigated the causal role of Timp3 in AAA formation. Infusion of angiotensin II (Ang II) using micro-osmotic (Alzet) pumps in Timp3−/− male mice, but not in wild type control mice, led to adverse remodeling of the abdominal aorta, reduced collagen and elastin proteins but not mRNA, and elevated proteolytic activities, suggesting excess protein degradation within 2 weeks that led to formation of AAA by 4 weeks. Intriguingly, despite early up-regulation of MMP2 in Timp3−/−Ang II aortas, additional deletion of Mmp2 in these mice (Timp3−/−/Mmp2−/−) resulted in exacerbated AAA, compromised survival due to aortic rupture, and inflammation in the abdominal aorta. Reconstitution of WT bone marrow in Timp3−/−/Mmp2−/− mice reduced inflammation and prevented AAA in these animals following Ang II infusion. Treatment with a broad spectrum MMP inhibitor (PD166793) prevented the Ang II-induced AAA in Timp3−/− and Timp3−/−/Mmp2−/− mice. Our study demonstrates that the regulatory function of TIMP3 is critical in preventing adverse vascular remodeling and AAA. Hence, replenishing TIMP3, a physiological inhibitor of a number of metalloproteinases, could serve as a therapeutic approach in limiting AAA development or expansion.


Heart Failure Reviews | 2012

Role of ACE2 in diastolic and systolic heart failure

Wang Wang; Sreedhar Bodiga; Subhash K. Das; Jennifer Lo; Vaibhav B. Patel; Gavin Y. Oudit

A novel angiotensin-converting enzyme (ACE) homolog, named ACE2, is a monocarboxypeptidase which metabolizes several peptides. ACE2 degrades Angiotensin (Ang) II, a peptide with vasoconstrictive/proliferative effects, to generate Ang-(1-7), which acting through its receptor Mas exerts vasodilatory/anti-proliferative actions. In addition, as ACE2 is a multifunctional enzyme and its actions on other vasoactive peptides can also contribute to its vasoactive effects including the apelin-13 and apelin-17 peptides. The discovery of ACE2 corroborates the establishment of two counter-regulatory arms within the renin-angiotensin system. The first one is formed by the classical pathway involving the ACE-Ang II-AT1 receptor axis and the second arm is constituted by the ACE2-Ang 1-7/Mas receptor axis. Loss of ACE2 enhances the adverse pathological remodeling susceptibility to pressure-overload and myocardial infarction. ACE2 is also a negative regulator of Ang II-induced myocardial hypertrophy, fibrosis, and diastolic dysfunction. The ACE2-Ang 1-7/Mas axis may represent new possibilities for developing novel therapeutic strategies for the treatment of hypertension and cardiovascular diseases. In this review, we will summarize the biochemical and pathophysiological aspects of ACE2 with a focus on its role in diastolic and systolic heart failure.


Diabetes | 2015

ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity.

Vaibhav B. Patel; Jun Mori; Brent A. McLean; Ratnadeep Basu; Subhash K. Das; Tharmarajan Ramprasath; Nirmal Parajuli; Josef M. Penninger; Maria B. Grant; Gary D. Lopaschuk; Gavin Y. Oudit

Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.

Collaboration


Dive into the Subhash K. Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wang Wang

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Fan

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge