Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhasis Barik is active.

Publication


Featured researches published by Subhasis Barik.


PLOS ONE | 2013

Neem Leaf Glycoprotein Activates CD8 + T Cells to Promote Therapeutic Anti-Tumor Immunity Inhibiting the Growth of Mouse Sarcoma

Atanu Mallick; Subhasis Barik; Kuntal Kanti Goswami; Saptak Banerjee; Sarbari Ghosh; Koustav Sarkar; Anamika Bose; Rathindranath Baral

In spite of sufficient data on Neem Leaf Glycoprotein (NLGP) as a prophylactic vaccine, little knowledge currently exists to support the use of NLGP as a therapeutic vaccine. Treatment of mice bearing established sarcomas with NLGP (25 µg/mice/week subcutaneously for 4 weeks) resulted in tumor regression or dormancy (Tumor free/Regressor, 13/24 (NLGP), 4/24 (PBS)). Evaluation of CD8+ T cell status in blood, spleen, TDLN, VDLN and tumor revealed increase in cellular number. Elevated expression of CD69, CD44 and Ki67 on CD8+ T cells revealed their state of activation and proliferation by NLGP. Depletion of CD8+ T cells in mice at the time of NLGP treatment resulted in partial termination of tumor regression. An expansion of CXCR3+ and CCR5+ T cells was observed in the TDLN and tumor, along with their corresponding ligands. NLGP treatment enhances type 1 polarized T-bet expressing T cells with downregulation of GATA3. Treg cell population was almost unchanged. However, T∶Treg ratios significantly increased with NLGP. Enhanced secretion/expression of IFNγ was noted after NLGP therapy. In vitro culture of T cells with IL-2 and sarcoma antigen resulted in significant enhancement in cytotoxic efficacy. Consistently higher expression of CD107a was also observed in CD8+ T cells from tumors. Reinoculation of sarcoma cells in tumor regressed NLGP-treated mice maintained tumor free status in majority. This is correlated with the increment of CD44hiCD62Lhi central memory T cells. Collectively, these findings support a paradigm in which NLGP dynamically orchestrates the activation, expansion, and recruitment of CD8+ T cells into established tumors to operate significant tumor cell lysis.


Journal of Immunology | 2013

Tumor-Derived Vascular Pericytes Anergize Th Cells

Anamika Bose; Subhasis Barik; Saptak Banerjee; Tithi Ghosh; Atanu Mallick; Suchandra Bhattacharyya Majumdar; Kuntal Kanti Goswami; Avishek Bhuniya; Sayantan Banerjee; Rathindranath Baral; Walter J. Storkus; Partha Sarathi Dasgupta; Subrata Majumdar

Immune evasion within the tumor microenvironment supports malignant growth and is also a major obstacle for successful immunotherapy. Multiple cellular components and soluble factors coordinate to disrupt protective immune responses. Although stromal cells are well-known for their parenchymal supportive roles in cancer establishment and progression, we demonstrate for the first time, to our knowledge, that tumor-derived vascular pericytes negatively influence CD4+ T cell activation and proliferation, and promote anergy in recall response to Ag by CD4+CD44+ T cells via regulator of G protein signaling 5– and IL-6–dependent pathways. Our data support a new specific role for tumor-derived pericytes in the immune evasion paradigm within the tumor microenvironment and suggest the targeting of these cell populations in the context of successful immunotherapeutics for the treatment of cancer.


PLOS ONE | 2013

Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma.

Subhasis Barik; Saptak Banerjee; Atanu Mallick; Kuntal Kanti Goswami; Soumyabrata Roy; Anamika Bose; Rathindranath Baral

We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR+ cells within CD8+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.


Immunotherapy | 2011

Neem leaf glycoprotein inhibits CD4+CD25+Foxp3+ Tregs to restrict murine tumor growth.

Tathagata Chakraborty; Anamika Bose; Subhasis Barik; Kuntal Kanti Goswami; Saptak Banerjee; Shyamal Goswami; Diptendu Ghosh; Soumyabrata Roy; Krishnendu Chakraborty; Koustav Sarkar; Rathindranath Baral

BACKGROUND The presence of Tregs in tumors is associated with compromised tumor-specific immune responses and has a clear negative impact on survival of cancer patients. Thus, downregulation of Tregs is considered as a promising cancer immunotherapeutic approach. We have reported previously that neem leaf glycoprotein (NLGP) prophylaxis restricts tumor growth in mice by immune activation. In continuation, here, involvement of NLGP in the modulation of Tregs in association with tumor growth restriction is investigated. RESULTS NLGP downregulates CD4+CD25+Foxp3+ Tregs within tumors. NLGP-mediated downregulation of CCR4 along with its ligand CCL22 restricts Treg migration at the tumor site. NLGP is not apoptotic to Tregs but significantly downregulates the expression of Foxp3, CTLA4 and GITR. It also reverses the functional impairment of T-effector cells by Tregs, in terms of IFN-γ secretion, cellular proliferation and tumor cell cytotoxicity. NLGP also facilitates reconditioning of tumor microenvironment (hostile) by increasing IFN-γ and IL-12 but decreasing IL-10, TGF-β, VEGF and IDO, creating an antitumor niche. Interaction between Foxp3, p-NFATc3 and p-Smad2/3, needed for successful Treg function, is also inhibited by NLGP. CONCLUSION All of these coordinated events might result in inhibition of Treg associated-tumor growth and therefore increased survivability of mice having NLGP treatment before or/and after tumor inoculation. Thus, the possibility of NLGP being an excellent tool as a T-cell anergy breaker by abrogating the suppressor functions of Tregs in cancer needs to be explored further in the clinic.


Molecular Immunology | 2014

Targeting STAT3 phosphorylation by neem leaf glycoprotein prevents immune evasion exerted by supraglottic laryngeal tumor induced M2 macrophages

Kuntal Kanti Goswami; Subhasis Barik; Madhurima Sarkar; Anup Kumar Bhowmick; Jaydip Biswas; Anamika Bose; Rathindranath Baral

Tumor-associated macrophages (TAMs) are preferentially M2 skewed and promote tumor growth, angiogenesis, invasion, and/or metastasis. In this study, we have analyzed the in vitro immunomodulatory potential of a non-toxic neem leaf glycoprotein (NLGP) in reprogramming Stage III supraglottic laryngeal tumor cell lysate (SLTCL) induced M2 TAMs to their classical anti-tumor shape (M1). Data generated from this study support that NLGP is effective in preventing the SLTCL induced generation (CD68(+)CD206(+)IL-10(high) to CD68(+)CD206(-)IL-10(low) TAMs) and functions (NO(low) to NO(high), MHC-I(low) to MHC-I(high), CD80(low) to CD80(high)) of pro-tumorous M2 macrophages, which in turn associated with sustained anti-tumor effector functions by promoting cytotoxic T cell activities and suppressing regulatory T cells. Furthermore, our data also suggest that NLGP prevents M2 skewness of TAMs by downregulating phosphorylation of targeted STAT3.


PLOS ONE | 2014

Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

Saptak Banerjee; Tithi Ghosh; Subhasis Barik; Arnab Das; Sarbari Ghosh; Avishek Bhuniya; Anamika Bose; Rathindranath Baral

We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.


International Immunopharmacology | 2013

Neem leaf glycoprotein is nontoxic to physiological functions of Swiss mice and Sprague Dawley rats: histological, biochemical and immunological perspectives.

Atanu Mallick; Sarbari Ghosh; Saptak Banerjee; Sayantani Majumder; Arnab Das; Bipasha Mondal; Subhasis Barik; Kuntal Kanti Goswami; Smarajit Pal; Subrata Laskar; Koustav Sarkar; Anamika Bose; Rathindranath Baral

We have evaluated the toxicity profile of a unique immunomodulator, neem leaf glycoprotein (NLGP) on different physiological systems of Swiss mice and Sprague Dawley rats. NLGP injection, even in higher doses than effective concentration caused no behavioral changes in animals and no death. NLGP injection increased the body weights of mice slightly without any change in organ weights. NLGP showed no adverse effect on the hematological system. Moreover, little hematostimulation was noticed, as evidenced by increased hemoglobin content, leukocyte count and lymphocyte numbers. Histological assessment of different organs revealed no alterations in the organ microstructure of the NLGP treated mice and rats. Histological normalcy of liver and kidney was further confirmed by the assessment of liver enzymes like alkaline phosphatase, SGOT, SGPT and nephrological products like urea and creatinine. NLGP has no apoptotic effect on immune cells but induces proliferation of mononuclear cells collected from mice and rats. Number of CD4(+), CD8(+) T cells, DX5(+) NK cells, CD11b(+) macrophages and CD11c(+) dendritic cells is upregulated by NLGP without a significant change in CD4(+)CD25(+)Foxp3(+) regulatory T cells. Type 1 cytokines, like IFNγ also increased in serum with a decrease in type 2 cytokines. Total IgG content, especially IgG2a increased in NLGP treated mice. These type 1 directed changes help to create an anti-tumor immune environment that results in the restriction of carcinoma growth in mice. Accumulated evidence strongly suggests the non-toxic nature of NLGP. Thus, it can be recommended for human use in anti-cancer therapy.


Human Immunology | 2013

Neem leaf glycoprotein overcomes indoleamine 2,3 dioxygenase mediated tolerance in dendritic cells by attenuating hyperactive regulatory T cells in cervical cancer stage IIIB patients.

Soumyabrata Roy; Subhasis Barik; Saptak Banerjee; Avishek Bhuniya; Smarajit Pal; Parthasarathi Basu; Jaydip Biswas; Shyamal Goswami; Tathagata Chakraborty; Anamika Bose; Rathindranath Baral

Tolerogenic dendritic cells (DCs) are a subset of DCs characterized by abundant indoleamine 2,3 dioxygenase (IDO) expressions. IDO may be co-operatively induced in DCs by regulatory T (Tregs) cells and various DC maturation agents. Tregs are markedly amplified in the physiological system of cancer patients, inducing over tolerance in DCs that leads to the hyper accumulation of immunosuppressive IDO in tumor microenvironment, thereby, hampering anti-tumor immunity. Consequently, a major focus of current immunotherapeutic strategies in cancer is to minimize IDO, which is possible by reducing Tregs and using various IDO inhibitors. Neem leaf glycoprotein (NLGP), a natural and nontoxic immunomodulator, demonstrated several unique immunoregulatory activities. Noteworthy activities of NLGP are to mature DCs and to inhibit Tregs. As Tregs are inducer of IDO in DCs and hyperactive Tregs is a hallmark of cancer, we anticipated that NLGP might abrogate IDO induction in DCs by inhibiting Tregs. Evidences are presented here that in a co-culture of DCs and Tregs isolated from cervical cancer stage IIIB (CaCx-IIIB) patients, NLGP does inhibit IDO induction in DCs by curtailing the over expression of Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) on Tregs and concomitantly induces optimal DC maturation. In contrast, in the presence of LPS as maturation agent the DCs displays a tolerogenic profile. This finding suggests the reduction of tolerogenecity of DCs in CaCx-IIIB patients by reducing the IDO pool using NLGP. Accordingly, this study sheds more light on the diverse immunomodulatory repertoire of NLGP.


International Immunopharmacology | 2013

Neem leaf glycoprotein is superior than cisplatin and sunitinib malate in restricting melanoma growth by normalization of tumor microenvironment.

Subhasis Barik; Avishek Bhuniya; Saptak Banerjee; Arnab Das; Madhurima Sarkar; Tanmoy Paul; Tithi Ghosh; Sarbari Ghosh; Soumyabrata Roy; Smarajit Pal; Anamika Bose; Rathindranath Baral

We have observed earlier that therapeutic treatment with neem leaf glycoprotein (NLGP) inhibits murine B16-melanoma growth in vivo and improves survivability of treated mice. Anti-tumor effect of NLGP is directly associated with enhanced CD8(+) T cell activity and downregulation of suppressive cellular functions. Objective of this present study is to know the efficacy of NLGP in comparison to two popular drugs, Cisplatin and Sunitinib malate (Sutent) in relation to the modulation of tumor microenvironment (TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was significantly switched to type 1 microenvironment with dominance of IFNγ and IL-2 within NLGP-TME, which was not found in other cases; however Cisplatin-TME appeared better in type 2 to type 1 conversion than Sutent-TME as evidenced by RT-PCR, ELISA and immunohistochemical analysis. NLGP-TME educated CD8(+) T cells exhibited greater cytotoxicity to B16 Melanoma cells in vitro and these cells showed comparatively higher expression of cytotoxicity related molecules, perforin and granzyme B than Cisplatin-TME and Sutent-TME educated T cells. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of melanoma in vivo. Such tumor growth inhibition was in significantly lower extent when therapeutic CD8(+) T cells were exposed to either Cisplatin-TME or Sutent-TME or control-TME. Accumulated evidences strongly suggest that non toxic NLGP normalized TME allows T cells to perform optimally than other TMEs under study to inhibit the melanoma growth.


Immunology Letters | 2013

Supraglottic laryngeal tumor microenvironmental factors facilitate STAT3 dependent pro-tumorigenic switch in tumor associated macrophages to render utmost immune evasion

Kuntal Kanti Goswami; Subhasis Barik; Saptak Banerjee; Anup Kumar Bhowmick; Jaydip Biswas; Anamika Bose; Rathindranath Baral

Content of tumor microenvironment (TME) is varied greatly among different types of laryngeal tumors, namely, supraglottic, glottic and subglottic tumors. These three different TMEs shape infiltrating monocytes/macrophages toward M2 genotypes in variable degrees. Results obtained from in vitro studies demonstrated extent of expression of M2 phenotypic features on macrophages was maximum after their exposure to supraglottic laryngeal tumor cell lysates (SLTCL) than glottic or subglottic lysates. Moreover, M2 macrophages generated under influence of SLTCL show less nitric oxide production, greater IL-10: IL-12 ratio and poor antigen presentation. Co-culture of such M2 macrophages with T cells from healthy donors resulted decreased activation of T cells and T cell mediated tumor cell cytotoxicity, than, glottic or subglottic. SLTCL mediated macrophage polarization is STAT3 dependent and might be one of the major factors for severe immune paralysis leading to poor prognosis of supraglottic laryngeal tumor bearer following standard treatment.

Collaboration


Dive into the Subhasis Barik's collaboration.

Top Co-Authors

Avatar

Anamika Bose

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Rathindranath Baral

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Saptak Banerjee

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sarbari Ghosh

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Avishek Bhuniya

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Koustav Sarkar

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Kuntal Kanti Goswami

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Madhurima Sarkar

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Soumyabrata Roy

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Tithi Ghosh

Chittaranjan National Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge