Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhra Chaudhuri is active.

Publication


Featured researches published by Subhra Chaudhuri.


Nature | 2010

Diverse somatic mutation patterns and pathway alterations in human cancers.

Zhengyan Kan; Bijay S. Jaiswal; Jeremy Stinson; Vasantharajan Janakiraman; Deepali Bhatt; Howard M. Stern; Peng Yue; Peter M. Haverty; Richard Bourgon; Jianbiao Zheng; Martin Moorhead; Subhra Chaudhuri; Lynn P. Tomsho; Brock A. Peters; Kanan Pujara; Shaun Cordes; David P. Davis; Victoria Carlton; Wenlin Yuan; Li Li; Weiru Wang; Charles Eigenbrot; Joshua S. Kaminker; David A. Eberhard; Paul Waring; Stephan C. Schuster; Zora Modrusan; Zemin Zhang; David Stokoe; Frederic J. de Sauvage

The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.


Nature | 2012

Recurrent R-spondin fusions in colon cancer

Somasekar Seshagiri; Eric Stawiski; Steffen Durinck; Zora Modrusan; Elaine E. Storm; Caitlin B. Conboy; Subhra Chaudhuri; Yinghui Guan; Vasantharajan Janakiraman; Bijay S. Jaiswal; Joseph Guillory; Connie Ha; Gerrit J. P. Dijkgraaf; Jeremy Stinson; Florian Gnad; Melanie A. Huntley; Jeremiah D. Degenhardt; Peter M. Haverty; Richard Bourgon; Weiru Wang; Hartmut Koeppen; Robert Gentleman; Timothy K. Starr; Zemin Zhang; David A. Largaespada; Thomas D. Wu; Frederic J. de Sauvage

Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.


Nature Genetics | 2012

Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer

Charles M. Rudin; Steffen Durinck; Eric Stawiski; John T. Poirier; Zora Modrusan; David S. Shames; Emily Bergbower; Yinghui Guan; James Shin; Joseph Guillory; Celina Sanchez Rivers; Catherine K. Foo; Deepali Bhatt; Jeremy Stinson; Florian Gnad; Peter M. Haverty; Robert Gentleman; Subhra Chaudhuri; Vasantharajan Janakiraman; Bijay S. Jaiswal; Chaitali Parikh; Wenlin Yuan; Zemin Zhang; Hartmut Koeppen; Thomas D. Wu; Howard M. Stern; Robert L. Yauch; Kenneth Huffman; Diego D Paskulin; Peter B. Illei

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein–coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.


Cancer Cell | 2009

Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation

Bijay S. Jaiswal; Vasantharajan Janakiraman; Noelyn M. Kljavin; Subhra Chaudhuri; Howard M. Stern; Weiru Wang; Zhengyan Kan; Hashem A. Dbouk; Brock A. Peters; Paul Waring; Trisha Dela Vega; Denise M. Kenski; Krista K. Bowman; Maria N. Lorenzo; Hong Li; Jiansheng Wu; Zora Modrusan; Jeremy Stinson; Michael Eby; Peng Yue; Josh Kaminker; Frederic J. de Sauvage; Jonathan M. Backer; Somasekar Seshagiri

Members of the mammalian phosphoinositide-3-OH kinase (PI3K) family of proteins are critical regulators of various cellular process including cell survival, growth, proliferation, and motility. Oncogenic activating mutations in the p110alpha catalytic subunit of the heterodimeric p110/p85 PI3K enzyme are frequent in human cancers. Here we show the presence of frequent mutations in p85alpha in colon cancer, a majority of which occurs in the inter-Src homology-2 (iSH2) domain. These mutations uncouple and retain p85alphas p110-stabilizing activity, while abrogating its p110-inhibitory activity. The p85alpha mutants promote cell survival, AKT activation, anchorage-independent cell growth, and oncogenesis in a p110-dependent manner.


Cancer Cell | 2013

Oncogenic ERBB3 Mutations in Human Cancers

Bijay S. Jaiswal; Noelyn M. Kljavin; Eric Stawiski; Emily Chan; Chaitali Parikh; Steffen Durinck; Subhra Chaudhuri; Kanan Pujara; Joseph Guillory; Kyle A. Edgar; Vasantharajan Janakiraman; Rolf-Peter Scholz; Krista K. Bowman; Maria N. Lorenzo; Hong Li; Jiansheng Wu; Wenlin Yuan; Brock A. Peters; Zhengyan Kan; Jeremy Stinson; Michelle Mak; Zora Modrusan; Charles Eigenbrot; Ron Firestein; Howard M. Stern; Krishnaraj Rajalingam; Gabriele Schaefer; Mark Merchant; Mark X. Sliwkowski; Frederic J. de Sauvage

The human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ~11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo.


Nature Genetics | 2016

Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations

Raphael Bueno; Eric Stawiski; Leonard D. Goldstein; Steffen Durinck; Assunta De Rienzo; Zora Modrusan; Florian Gnad; Thong T. Nguyen; Bijay S. Jaiswal; Lucian R. Chirieac; Daniele Sciaranghella; Nhien Dao; Corinne E. Gustafson; Kiara J. Munir; Jason A. Hackney; Amitabha Chaudhuri; Ravi Gupta; Joseph Guillory; Karen Toy; Connie Ha; Ying-Jiun Chen; Jeremy Stinson; Subhra Chaudhuri; Na Zhang; Thomas D. Wu; David J. Sugarbaker; Frederic J. de Sauvage; William G. Richards; Somasekar Seshagiri

We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.


Nature Genetics | 2015

Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes

Steffen Durinck; Eric Stawiski; Andrea Pavia-Jimenez; Zora Modrusan; Payal Kapur; Bijay S. Jaiswal; Na Zhang; Vanina Toffessi-Tcheuyap; Thong T. Nguyen; Kanika Bajaj Pahuja; Ying Jiun Chen; Sadia Saleem; Subhra Chaudhuri; Sherry Heldens; Marlena Jackson; Samuel Peña-Llopis; Joseph Guillory; Karen Toy; Connie Ha; Corissa J. Harris; Eboni Holloman; Haley Hill; Jeremy Stinson; Celina Sanchez Rivers; Vasantharajan Janakiraman; Weiru Wang; Lisa N. Kinch; Nick V. Grishin; Peter M. Haverty; Bernard Chow

To further understand the molecular distinctions between kidney cancer subtypes, we analyzed exome, transcriptome and copy number alteration data from 167 primary human tumors that included renal oncocytomas and non–clear cell renal cell carcinomas (nccRCCs), consisting of papillary (pRCC), chromophobe (chRCC) and translocation (tRCC) subtypes. We identified ten significantly mutated genes in pRCC, including MET, NF2, SLC5A3, PNKD and CPQ. MET mutations occurred in 15% (10/65) of pRCC samples and included previously unreported recurrent activating mutations. In chRCC, we found TP53, PTEN, FAAH2, PDHB, PDXDC1 and ZNF765 to be significantly mutated. Gene expression analysis identified a five-gene set that enabled the molecular classification of chRCC, renal oncocytoma and pRCC. Using RNA sequencing, we identified previously unreported gene fusions, including ACTG1-MITF fusion. Ectopic expression of the ACTG1-MITF fusion led to cellular transformation and induced the expression of downstream target genes. Finally, we observed upregulation of the anti-apoptotic factor BIRC7 in MiTF-high RCC tumors, suggesting a potential therapeutic role for BIRC7 inhibitors.


Journal of Cell Biology | 2017

Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia

Trinna L. Cuellar; Anna-Maria Herzner; Xiaotian Zhang; Yogesh Goyal; Colin K. Watanabe; Brad A. Friedman; Vasantharajan Janakiraman; Steffen Durinck; Jeremy Stinson; David Arnott; Tommy K. Cheung; Subhra Chaudhuri; Zora Modrusan; Jonas Martin Doerr; Marie Classon; Benjamin Haley

A propensity for rewiring genetic and epigenetic regulatory networks, thus enabling sustained cell proliferation, suppression of apoptosis, and the ability to evade the immune system, is vital to cancer cell propagation. An increased understanding of how this is achieved is critical for identifying or improving therapeutic interventions. In this study, using acute myeloid leukemia (AML) human cell lines and a custom CRISPR/Cas9 screening platform, we identify the H3K9 methyltransferase SETDB1 as a novel, negative regulator of innate immunity. SETDB1 is overexpressed in many cancers, and loss of this gene in AML cells triggers desilencing of retrotransposable elements that leads to the production of double-stranded RNAs (dsRNAs). This is coincident with induction of a type I interferon response and apoptosis through the dsRNA-sensing pathway. Collectively, our findings establish a unique gene regulatory axis that cancer cells can exploit to circumvent the immune system.


BMC Medical Genetics | 2018

Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India

Viswanathan Mohan; Venkatesan Radha; Thong T. Nguyen; Eric Stawiski; Kanika Bajaj Pahuja; Leonard D. Goldstein; Jennifer Tom; Ranjit Mohan Anjana; Monica Kong-Beltran; Tushar Bhangale; Suresh Jahnavi; Radhakrishnan Chandni; Vijay Gayathri; Paul George; Na Zhang; Sakthivel Murugan; Sameer Phalke; Subhra Chaudhuri; Ravi Gupta; Jingli Zhang; S. Santhosh; Jeremy Stinson; Zora Modrusan; V. L. Ramprasad; Somasekar Seshagiri; Andrew S. Peterson

BackgroundMaturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin.MethodsIn this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed.ResultsWe found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6–1 that may contribute to development of MODY. Functional assessment of the NKX6–1 variants showed that they are functionally impaired.ConclusionsOur findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6–1, and these require further validation.


Scientific Reports | 2018

Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus

Thong T. Nguyen; Kushal Suryamohan; Boney Kuriakose; Vasantharajan Janakiraman; Mike Reichelt; Subhra Chaudhuri; Joseph Guillory; Neethu Divakaran; P. E. Rabins; Ridhi Goel; Bhabesh Deka; Suman Sarkar; Preety Ekka; Yu-Chih Tsai; Derek Vargas; S. Santhosh; Sangeetha Mohan; Chen-Shan Chin; Jonas Korlach; George Thomas; Azariah Babu; Somasekar Seshagiri

We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.

Collaboration


Dive into the Subhra Chaudhuri's collaboration.

Researchain Logo
Decentralizing Knowledge