Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suborno M. Ghosh is active.

Publication


Featured researches published by Suborno M. Ghosh.


Hypertension | 2013

Enhanced Vasodilator Activity of Nitrite in Hypertension Critical Role for Erythrocytic Xanthine Oxidoreductase and Translational Potential

Suborno M. Ghosh; Vikas Kapil; Isabel Fuentes-Calvo; Kristen J. Bubb; Vanessa Pearl; Alexandra B. Milsom; Rayomand S. Khambata; Sheiva Maleki-Toyserkani; Mubeen Yousuf; Nigel Benjamin; Andrew J. Webb; Mark J. Caulfield; Adrian J. Hobbs; Amrita Ahluwalia

Elevation of circulating nitrite (NO2 −) levels causes vasodilatation and lowers blood pressure in healthy volunteers. Whether these effects and the underpinning mechanisms persist in hypertension is unknown. Therefore, we investigated the consequences of systemic nitrite elevation in spontaneously hypertensive rats and conducted proof-of-principle studies in patients. Nitrite caused dose-dependent blood pressure–lowering that was profoundly enhanced in spontaneously hypertensive rats versus normotensive Wistar Kyoto controls. This effect was virtually abolished by the xanthine oxidoreductase (XOR) inhibitor, allopurinol, and associated with hypertension-specific XOR-dependent nitrite reductase activity localized to the erythrocyte but not the blood vessel wall. To determine whether these pathways translate to human hypertension, we investigated the effects of elevation of circulating nitrite levels in 15 drug naïve grade 1 hypertensives. To elevate nitrite, we used a dose of dietary nitrate (≈3.5 mmol) that elevated nitrite levels ≈1.5-fold (P<0.01); a rise shown previously to exert no significant blood pressure–lowering effects in normotensives. This dose caused substantial reductions in systolic (≈12 mm Hg) and diastolic blood pressures (P<0.001) and pulse wave velocity (P<0.05); effects associated with elevations in erythrocytic XOR expression and XOR-dependent nitrite reductase activity. Our observations demonstrate the improved efficacy of inorganic nitrate and nitrite in hypertension as a consequence of increased erythrocytic XOR nitrite reductase activity and support the concept of dietary nitrate supplementation as an effective, but simple and inexpensive, antihypertensive strategy.Elevation of circulating nitrite (NO2−) levels causes vasodilatation and lowers blood pressure in healthy volunteers. Whether these effects and the underpinning mechanisms persist in hypertension is unknown. Therefore, we investigated the consequences of systemic nitrite elevation in spontaneously hypertensive rats and conducted proof-of-principle studies in patients. Nitrite caused dose-dependent blood pressure–lowering that was profoundly enhanced in spontaneously hypertensive rats versus normotensive Wistar Kyoto controls. This effect was virtually abolished by the xanthine oxidoreductase (XOR) inhibitor, allopurinol, and associated with hypertension-specific XOR-dependent nitrite reductase activity localized to the erythrocyte but not the blood vessel wall. To determine whether these pathways translate to human hypertension, we investigated the effects of elevation of circulating nitrite levels in 15 drug naive grade 1 hypertensives. To elevate nitrite, we used a dose of dietary nitrate (≈3.5 mmol) that elevated nitrite levels ≈1.5-fold ( P <0.01); a rise shown previously to exert no significant blood pressure–lowering effects in normotensives. This dose caused substantial reductions in systolic (≈12 mm Hg) and diastolic blood pressures ( P <0.001) and pulse wave velocity ( P <0.05); effects associated with elevations in erythrocytic XOR expression and XOR-dependent nitrite reductase activity. Our observations demonstrate the improved efficacy of inorganic nitrate and nitrite in hypertension as a consequence of increased erythrocytic XOR nitrite reductase activity and support the concept of dietary nitrate supplementation as an effective, but simple and inexpensive, antihypertensive strategy. # Novelty and Significance {#article-title-61}


Nitric Oxide | 2012

Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers

Manpreet Bahra; Vikas Kapil; Vanessa Pearl; Suborno M. Ghosh; Amrita Ahluwalia

Highlights ► Inorganic nitrate supplementation does not alter endothelial function in healthy volunteers. ► Despite this, there was a reduction in blood pressure and improvement in arterial compliance. ► Improvements in vascular function are likely to contribute to the beneficial effects of inorganic nitrate on blood pressure.


Circulation | 2012

Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase

Reshma S. Baliga; Alexandra B. Milsom; Suborno M. Ghosh; Sarah L. Trinder; Raymond J. MacAllister; Amrita Ahluwalia; Adrian J. Hobbs

Background— Pulmonary hypertension (PH) is a multifactorial disease characterized by increased pulmonary vascular resistance and right ventricular failure; morbidity and mortality remain unacceptably high. Loss of nitric oxide (NO) bioactivity is thought to contribute to the pathogenesis of PH, and agents that augment pulmonary NO signaling are clinically effective in the disease. Inorganic nitrate (NO3−) and nitrite (NO2−) elicit a reduction in systemic blood pressure in healthy individuals; this effect is underpinned by endogenous and sequential reduction to NO. Herein, we determined whether dietary nitrate and nitrite might be preferentially reduced to NO by the hypoxia associated with PH, and thereby offer a convenient, inexpensive method of supplementing NO functionality to reduce disease severity. Methods and Results— Dietary nitrate reduced the right ventricular pressure and hypertrophy, and pulmonary vascular remodeling in wild-type mice exposed to 3 weeks of hypoxia; this beneficial activity was mirrored largely by dietary nitrite. The cytoprotective effects of dietary nitrate were associated with increased plasma and lung concentrations of nitrite and cGMP. The beneficial effects of dietary nitrate and nitrite were reduced in mice lacking endothelial NO synthase or treated with the xanthine oxidoreductase inhibitor allopurinol. Conclusions— These data demonstrate that dietary nitrate, and to a lesser extent dietary nitrite, elicit pulmonary dilatation, prevent pulmonary vascular remodeling, and reduce the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile depends on endothelial NO synthase and xanthine oxidoreductase -catalyzed reduction of nitrite to NO. Exploitation of this mechanism (ie, dietary nitrate/nitrite supplementation) represents a viable, orally active therapy for PH. # Clinical Perspective {#article-title-52}Background— Pulmonary hypertension (PH) is a multifactorial disease characterized by increased pulmonary vascular resistance and right ventricular failure; morbidity and mortality remain unacceptably high. Loss of nitric oxide (NO) bioactivity is thought to contribute to the pathogenesis of PH, and agents that augment pulmonary NO signaling are clinically effective in the disease. Inorganic nitrate (NO3 −) and nitrite (NO2 −) elicit a reduction in systemic blood pressure in healthy individuals; this effect is underpinned by endogenous and sequential reduction to NO. Herein, we determined whether dietary nitrate and nitrite might be preferentially reduced to NO by the hypoxia associated with PH, and thereby offer a convenient, inexpensive method of supplementing NO functionality to reduce disease severity. Methods and Results— Dietary nitrate reduced the right ventricular pressure and hypertrophy, and pulmonary vascular remodeling in wild-type mice exposed to 3 weeks of hypoxia; this beneficial activity was mirrored largely by dietary nitrite. The cytoprotective effects of dietary nitrate were associated with increased plasma and lung concentrations of nitrite and cGMP. The beneficial effects of dietary nitrate and nitrite were reduced in mice lacking endothelial NO synthase or treated with the xanthine oxidoreductase inhibitor allopurinol. Conclusions— These data demonstrate that dietary nitrate, and to a lesser extent dietary nitrite, elicit pulmonary dilatation, prevent pulmonary vascular remodeling, and reduce the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile depends on endothelial NO synthase and xanthine oxidoreductase -catalyzed reduction of nitrite to NO. Exploitation of this mechanism (ie, dietary nitrate/nitrite supplementation) represents a viable, orally active therapy for PH.


Free Radical Biology and Medicine | 2013

Antiplatelet effects of dietary nitrate in healthy volunteers: involvement of cGMP and influence of sex.

Shanti Velmurugan; Vikas Kapil; Suborno M. Ghosh; Sheridan Davies; Andrew McKnight; Zainab Aboud; Rayomand S. Khambata; Andrew J. Webb; Alastair W. Poole; Amrita Ahluwalia

Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.


The American Journal of Clinical Nutrition | 2016

Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study

Shanti Velmurugan; Jasmine Ming Gan; K S Rathod; Rayomand S. Khambata; Suborno M. Ghosh; Amy Hartley; Sven Van Eijl; Virag Sagi-Kiss; Tahseen A. Chowdhury; Michael A. Curtis; Gunter Georg Kuhnle; William Wade; Amrita Ahluwalia

Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P < 0.001). A small improvement in the aortic pulse wave velocity (i.e., a decrease of 0.22 m/s; 95% CI: −0.4, −0.3 m/s) was evident in the nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P < 0.05) but no significant changes in unstimulated expression. No adverse effects of dietary nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P < 0.01). The proportions of 78 bacterial taxa were different after the nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P < 0.01) increased after nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a preventative strategy against atherogenesis in larger cohorts. This trial was registered at clinicaltrials.gov as NCT01493752.


Antioxidants & Redox Signaling | 2015

“Repurposing” of Xanthine Oxidoreductase as a Nitrite Reductase: A New Paradigm for Therapeutic Targeting in Hypertension

Rayomand S. Khambata; Suborno M. Ghosh; Amrita Ahluwalia

SIGNIFICANCE In contrast to nitric oxide (NO), which has well-established, important effects in regulation of cardiovascular homeostasis, its oxidative metabolite nitrite has, until recently, been considered to be of minor functional significance. RECENT ADVANCES However, this view of nitrite has been radically revised over the past 10 years with evidence now supporting a critical role for this anion as a storage form of NO. CRITICAL ISSUES Importantly, while hypoxia and acidosis have been shown to play a pivotal role in the generation of nitrite to NO, a number of mammalian nitrite reductases have been identified that facilitate the reduction of nitrite. Critically, these nitrite reductases have been demonstrated to operate under physiological pH conditions and in normoxia, extending the functional remit of this anion from an ischemic mediator to an important regulator of physiology. One particular nitrite reductase that has been shown to operate under a wide range of environmental conditions is the enzyme xanthine oxidoreductase (XOR). FUTURE DIRECTIONS In this review, we discuss the evidence supporting a role for XOR as a nitrite reductase while focusing particularly on its function in hypertension. In addition, we discuss the potential merit in exploiting this activity of XOR in the therapeutics of hypertension.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Antiinflammatory actions of inorganic nitrate stabilize the atherosclerotic plaque

Rayomand S. Khambata; Suborno M. Ghosh; Krishnaraj S. Rathod; Tharssana Thevathasan; Federica Filomena; Qingzhong Xiao; Amrita Ahluwalia

Significance Reduced bioavailable nitric oxide generated within the vascular wall is a key pathogenic mechanism involved in the formation and rupture of an atheromatous plaque, the latter leading to myocardial infarction or stroke. We show that inorganic nitrate supplementation through delivery of nitric oxide reduces systemic leukocyte rolling and adherence, circulating neutrophil numbers, and monocyte activation through direct repression of neutrophil activation and up-regulation of interleukin-10–dependent antiinflammatory pathways in athero-prone mice. These antiinflammatory effects of inorganic nitrate result in reduced macrophage content of atherosclerotic plaques coupled with an elevation of smooth muscle content, resulting in a stable plaque phenotype. Our data suggest that inorganic nitrate supplementation has antiinflammatory effects, which may have clinical utility in the prophylaxis of atheroma development. Reduced bioavailable nitric oxide (NO) plays a key role in the enhanced leukocyte recruitment reflective of systemic inflammation thought to precede and underlie atherosclerotic plaque formation and instability. Recent evidence demonstrates that inorganic nitrate (NO3−) through sequential chemical reduction in vivo provides a source of NO that exerts beneficial effects upon the cardiovascular system, including reductions in inflammatory responses. We tested whether the antiinflammatory effects of inorganic nitrate might prove useful in ameliorating atherosclerotic disease in Apolipoprotein (Apo)E knockout (KO) mice. We show that dietary nitrate treatment, although having no effect upon total plaque area, caused a reduction in macrophage accumulation and an elevation in smooth muscle accumulation within atherosclerotic plaques of ApoE KO mice, suggesting plaque stabilization. We also show that in nitrate-fed mice there is reduced systemic leukocyte rolling and adherence, circulating neutrophil numbers, neutrophil CD11b expression, and myeloperoxidase activity compared with wild-type littermates. Moreover, we show in both the ApoE KO mice and using an acute model of inflammation that this effect upon neutrophils results in consequent reductions in inflammatory monocyte expression that is associated with elevations of the antiinflammatory cytokine interleukin (IL)-10. In summary, we demonstrate that inorganic nitrate suppresses acute and chronic inflammation by targeting neutrophil recruitment and that this effect, at least in part, results in consequent reductions in the inflammatory status of atheromatous plaque, and suggest that this effect may have clinical utility in the prophylaxis of inflammatory atherosclerotic disease.


Free Radical Biology and Medicine | 2015

Erratum to "Antiplatelet effects of dietary nitrate in healthy volunteers: Involvement of cGMP and influence of sex" [Free Radic. Biol. Med. 65 (2013) 1521-1532]

Shanti Velmurugan; Vikas Kapil; Suborno M. Ghosh; Sheridan Davies; Andrew McKnight; Zainab Aboud; Rayomand S. Khambata; Andrew J. Webb; Alastair W. Poole; Amrita Ahluwalia

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/


Hypertension | 2013

Enhanced Vasodilator Activity of Nitrite in HypertensionNovelty and Significance

Suborno M. Ghosh; Vikas Kapil; Isabel Fuentes-Calvo; Kristen J. Bubb; Vanessa Pearl; Alexandra B. Milsom; Rayomand S. Khambata; Sheiva Maleki-Toyserkani; Mubeen Yousuf; Nigel Benjamin; Andrew J. Webb; Mark J. Caulfield; Adrian J. Hobbs; Amrita Ahluwalia

Elevation of circulating nitrite (NO2 −) levels causes vasodilatation and lowers blood pressure in healthy volunteers. Whether these effects and the underpinning mechanisms persist in hypertension is unknown. Therefore, we investigated the consequences of systemic nitrite elevation in spontaneously hypertensive rats and conducted proof-of-principle studies in patients. Nitrite caused dose-dependent blood pressure–lowering that was profoundly enhanced in spontaneously hypertensive rats versus normotensive Wistar Kyoto controls. This effect was virtually abolished by the xanthine oxidoreductase (XOR) inhibitor, allopurinol, and associated with hypertension-specific XOR-dependent nitrite reductase activity localized to the erythrocyte but not the blood vessel wall. To determine whether these pathways translate to human hypertension, we investigated the effects of elevation of circulating nitrite levels in 15 drug naïve grade 1 hypertensives. To elevate nitrite, we used a dose of dietary nitrate (≈3.5 mmol) that elevated nitrite levels ≈1.5-fold (P<0.01); a rise shown previously to exert no significant blood pressure–lowering effects in normotensives. This dose caused substantial reductions in systolic (≈12 mm Hg) and diastolic blood pressures (P<0.001) and pulse wave velocity (P<0.05); effects associated with elevations in erythrocytic XOR expression and XOR-dependent nitrite reductase activity. Our observations demonstrate the improved efficacy of inorganic nitrate and nitrite in hypertension as a consequence of increased erythrocytic XOR nitrite reductase activity and support the concept of dietary nitrate supplementation as an effective, but simple and inexpensive, antihypertensive strategy.Elevation of circulating nitrite (NO2−) levels causes vasodilatation and lowers blood pressure in healthy volunteers. Whether these effects and the underpinning mechanisms persist in hypertension is unknown. Therefore, we investigated the consequences of systemic nitrite elevation in spontaneously hypertensive rats and conducted proof-of-principle studies in patients. Nitrite caused dose-dependent blood pressure–lowering that was profoundly enhanced in spontaneously hypertensive rats versus normotensive Wistar Kyoto controls. This effect was virtually abolished by the xanthine oxidoreductase (XOR) inhibitor, allopurinol, and associated with hypertension-specific XOR-dependent nitrite reductase activity localized to the erythrocyte but not the blood vessel wall. To determine whether these pathways translate to human hypertension, we investigated the effects of elevation of circulating nitrite levels in 15 drug naive grade 1 hypertensives. To elevate nitrite, we used a dose of dietary nitrate (≈3.5 mmol) that elevated nitrite levels ≈1.5-fold ( P <0.01); a rise shown previously to exert no significant blood pressure–lowering effects in normotensives. This dose caused substantial reductions in systolic (≈12 mm Hg) and diastolic blood pressures ( P <0.001) and pulse wave velocity ( P <0.05); effects associated with elevations in erythrocytic XOR expression and XOR-dependent nitrite reductase activity. Our observations demonstrate the improved efficacy of inorganic nitrate and nitrite in hypertension as a consequence of increased erythrocytic XOR nitrite reductase activity and support the concept of dietary nitrate supplementation as an effective, but simple and inexpensive, antihypertensive strategy. # Novelty and Significance {#article-title-61}


Hypertension | 2013

Enhanced Vasodilator Activity of Nitrite in Hypertension

Suborno M. Ghosh; Vikas Kapil; Isabel Fuentes-Calvo; Kristen J. Bubb; Vanessa Pearl; Alexandra B. Milsom; Rayomand S. Khambata; Sheiva Maleki-Toyserkani; Mubeen Yousuf; Nigel Benjamin; Andrew J. Webb; Mark J. Caulfield; Adrian J. Hobbs; Amrita Ahluwalia

Elevation of circulating nitrite (NO2 −) levels causes vasodilatation and lowers blood pressure in healthy volunteers. Whether these effects and the underpinning mechanisms persist in hypertension is unknown. Therefore, we investigated the consequences of systemic nitrite elevation in spontaneously hypertensive rats and conducted proof-of-principle studies in patients. Nitrite caused dose-dependent blood pressure–lowering that was profoundly enhanced in spontaneously hypertensive rats versus normotensive Wistar Kyoto controls. This effect was virtually abolished by the xanthine oxidoreductase (XOR) inhibitor, allopurinol, and associated with hypertension-specific XOR-dependent nitrite reductase activity localized to the erythrocyte but not the blood vessel wall. To determine whether these pathways translate to human hypertension, we investigated the effects of elevation of circulating nitrite levels in 15 drug naïve grade 1 hypertensives. To elevate nitrite, we used a dose of dietary nitrate (≈3.5 mmol) that elevated nitrite levels ≈1.5-fold (P<0.01); a rise shown previously to exert no significant blood pressure–lowering effects in normotensives. This dose caused substantial reductions in systolic (≈12 mm Hg) and diastolic blood pressures (P<0.001) and pulse wave velocity (P<0.05); effects associated with elevations in erythrocytic XOR expression and XOR-dependent nitrite reductase activity. Our observations demonstrate the improved efficacy of inorganic nitrate and nitrite in hypertension as a consequence of increased erythrocytic XOR nitrite reductase activity and support the concept of dietary nitrate supplementation as an effective, but simple and inexpensive, antihypertensive strategy.Elevation of circulating nitrite (NO2−) levels causes vasodilatation and lowers blood pressure in healthy volunteers. Whether these effects and the underpinning mechanisms persist in hypertension is unknown. Therefore, we investigated the consequences of systemic nitrite elevation in spontaneously hypertensive rats and conducted proof-of-principle studies in patients. Nitrite caused dose-dependent blood pressure–lowering that was profoundly enhanced in spontaneously hypertensive rats versus normotensive Wistar Kyoto controls. This effect was virtually abolished by the xanthine oxidoreductase (XOR) inhibitor, allopurinol, and associated with hypertension-specific XOR-dependent nitrite reductase activity localized to the erythrocyte but not the blood vessel wall. To determine whether these pathways translate to human hypertension, we investigated the effects of elevation of circulating nitrite levels in 15 drug naive grade 1 hypertensives. To elevate nitrite, we used a dose of dietary nitrate (≈3.5 mmol) that elevated nitrite levels ≈1.5-fold ( P <0.01); a rise shown previously to exert no significant blood pressure–lowering effects in normotensives. This dose caused substantial reductions in systolic (≈12 mm Hg) and diastolic blood pressures ( P <0.001) and pulse wave velocity ( P <0.05); effects associated with elevations in erythrocytic XOR expression and XOR-dependent nitrite reductase activity. Our observations demonstrate the improved efficacy of inorganic nitrate and nitrite in hypertension as a consequence of increased erythrocytic XOR nitrite reductase activity and support the concept of dietary nitrate supplementation as an effective, but simple and inexpensive, antihypertensive strategy. # Novelty and Significance {#article-title-61}

Collaboration


Dive into the Suborno M. Ghosh's collaboration.

Top Co-Authors

Avatar

Amrita Ahluwalia

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Rayomand S. Khambata

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Vikas Kapil

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Adrian J. Hobbs

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa Pearl

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristen J. Bubb

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reshma S. Baliga

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge