Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subrata Mukhopadhyay is active.

Publication


Featured researches published by Subrata Mukhopadhyay.


Journal of Hazardous Materials | 2001

Chemical oxidation of methylene blue using a Fenton-like reaction.

Kabita Dutta; Subrata Mukhopadhyay; Sekhar Bhattacharjee; Basab Chaudhuri

Oxidation by Fenton-like reactions is proven and economically feasible process for destruction of a variety of hazardous pollutants in wastewater. We report herein the oxidation of methylene blue, a basic dye of thiazine series using a Fenton-like reaction at normal laboratory temperature and at atmospheric pressure. The effects of different parameters like the initial concentrations of dye, Fe2+, and H2O2, pH of the solution, reaction temperature, and added electrolytes on the oxidation of the dye present in dilute aqueous solution in the concentration range (3.13-9.39)x10(-5)mol dm(-3) (10-30 mg l(-1)) have been assessed. The results indicate that the dye can be most effectively oxidized in aqueous solution at dye:Fe(2+):H2O2 molar ratio of 1:1.15:14.1. More than 98% removal of the dye could be achieved in 1h in the pH range 2.2-2.6 at 299 K which corresponds to about 81% reduction of the initial COD. The results will be useful for designing the treatment systems of various dye-containing wastewaters.


Inorganic Chemistry | 2012

Anion induced formation of supramolecular associations involving lone pair-π and anion-π interactions in Co(II) malonate complexes: experimental observations, Hirshfeld surface analyses and DFT studies.

Prankrishna Manna; Saikat Kumar Seth; Amrita Das; Joanna Hemming; Richard Prendergast; Madeleine Helliwell; Somnath Ray Choudhury; Antonio Frontera; Subrata Mukhopadhyay

Three Co(II)-malonate complexes, namely, (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](NO(3))(2) (1), (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](ClO(4))(2) (2), and (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](PF(6))(2) (3) [C(5)H(7)N(2) = protonated 2-aminopyridine, C(3)H(4)O(4) = malonic acid, NO(3)(-) = nitrate, ClO(4)(-) = perchlorate, PF(6)(-) = hexafluorophosphate], have been synthesized from purely aqueous media, and their crystal structures have been determined by single crystal X-ray diffraction. A thorough analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions in 1-3, which are crucial in building supramolecular architectures. When these complexes are structurally compared with their previously reported analogous Ni(II) or Mg(II) compounds, a very interesting feature regarding the role of counteranions has emerged. This phenomenon can be best described as anion-induced formation of extended supramolecular networks of the type lone pair-π/π-π/π-anion-π/π-lone pair and lone pair-π/π-π/π-anion involving various weak forces like lone pair-π, π-π, and anion-π interactions. The strength of these π contacts has been estimated using DFT calculations (M06/6-31+G*), and the formation energy of the supramolecular networks has been also evaluated. The influence of the anion (NO(3)(-), ClO(4)(-), and PF(6)(-)) on the total interaction energy of the assembly is also studied.


Journal of Physical Chemistry B | 2010

Supramolecular Assembly of Mg(II) Complexes Directed by Associative Lone Pair−π/π−π/π−Anion−π/π−Lone Pair Interactions

Amrita Das; Somnath Ray Choudhury; Biswajit Dey; Sampath Kumar Yalamanchili; Madeleine Helliwell; Patrick Gamez; Subrata Mukhopadhyay; Carolina Estarellas; Antonio Frontera

Two Mg(II) malonate complexes with protonated 2-aminopyridine and protonated 2-amino-4-picoline as counterions, namely, (C(5)H(7)N(2))(4)[Mg(C(3)H(2)O(4))(2)(H(2)O)(2)](ClO(4))(2) (1) and (C(6)H(8)N(2)H)(2)[Mg(C(3)H(2)O(4))(2)(H(2)O)(2)] x 4 H(2)O (2) [C(5)H(7)N(2) = protonated 2-aminopyridine, C(3)H(4)O(4) = malonic acid, C(6)H(8)N(2)H = protonated 2-amino-4-picoline], have been synthesized from purely aqueous media, and their crystal structures have been determined by single-crystal X-ray diffraction. The role of lone pair...pi interactions in stabilizing the self-assembly process appears to be of great importance in both complexes. Additional weak forces like anion...pi and noncovalent O...O interactions are also found to be operating in 1. A rare combination of lone pair...pi and anion...pi interactions in 1, of the type lone pair...pi/pi...pi/pi...anion...pi/pi...lone pair, is observed, and this unusual supramolecular network is fully described here. An attempt to prepare an analogous complex with 2-amino-4-picoline resulted in 2, which is isomorphous with our recently reported transition-metal complexes of the type (C(6)H(8)N(2)H)(2)[M(C(3)H(2)O(4))(2)(H(2)O)(2)] x 4 H(2)O (M = Ni/Co/Mn). A high-level DFT-D study (RI-B97-D/TZVP) has been used to characterize the different noncovalent interactions present in the solid state. We have also analyzed some crystal fragments to examine energetically some important assemblies that drive the crystal packing. Finally, we have studied the influence of magnesium on some hydrogen-bonding interactions.


CrystEngComm | 2013

A successive layer-by-layer assembly of supramolecular frameworks driven by a novel type of face-to-face π+–π+ interactions

Prankrishna Manna; Saikat Kumar Seth; Monojit Mitra; Amrita Das; N. Jiten Singh; Somnath Ray Choudhury; Tanusree Kar; Subrata Mukhopadhyay

The solid-state complex [PTPH3](NO3)3·2(HNO3) (1) has been synthesized and characterized by X-ray studies, where PTPH3 is the triply protonated form of 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine (PTP). The solid-state structure of the complex reveals that the π+–π+ interactions are the major driving force in the crystal packing while π+–π, π–π and π–anion interactions assist the overall stabilization of self-assembly. Complex 1 exhibits two different π-stack layers, where layer 1 is generated through π+–π+ interactions and the mutual forces of π+–π+ and π+–π form layer 2. The interaction energies of the main driving forces (π+–π+, π+–π and π–anion interactions) observed in the crystal structure have been calculated using dispersion-corrected density functional theory (DFT-D). An analysis of the Hirshfeld surface of complex 1 shows the intermolecular interactions involved within the crystal structure and corresponding quantitative information are presented by fingerprint plots.


CrystEngComm | 2011

Supramolecular assemblies involving anion–π and lone pair–π interactions: experimental observation and theoretical analysis

Amrita Das; Somnath Ray Choudhury; Carolina Estarellas; Biswajit Dey; Antonio Frontera; Joanna Hemming; Madeleine Helliwell; Patrick Gamez; Subrata Mukhopadhyay

Two nickel(II) malonate coordination compounds, namely (C5H7N2)4[Ni(C3H2O4)2(H2O)2](ClO4)2 (1) and (C5H7N2)4[Ni(C3H2O4)2(H2O)2](PF6)2 (2) [where C5H7N2 = protonated 2-aminopyridine, C3H4O4 = malonic acid, ClO4− = perchlorate, PF6− = hexafluoridophosphate], have been synthesized from purely aqueous media, and their single-crystal structures have been determined by X-ray diffraction. As anticipated, various weak forces, i.e. lone pair–π, π–π and anion–π interactions, play a key role in stabilizing the self-assembly process observed for both compounds. Intricate combinations of lone pair–π, π–π and anion–π interactions of the type lone pair–π/π–π/π–anion–π/π–lone pair and lone pair–π/π–π/π–anion are observed that are fully described, including by computational methods. The theoretical calculations allow estimating the strength of these π contacts.


CrystEngComm | 2013

Molecular architecture using novel types of non-covalent π-interactions involving aromatic neutrals, aromatic cations and π-anions

Saikat Kumar Seth; Prankrishna Manna; N. Jiten Singh; Monojit Mitra; Atish Dipankar Jana; Amrita Das; Somnath Ray Choudhury; Tanusree Kar; Subrata Mukhopadhyay; Kwang S. Kim

A solid-state complex utilizing non-covalent interactions between two aromatic cations is synthesized and characterized. The X-ray study of the structure shows that the anion templated π+–π+ interactions are the major driving force in the crystal packing, while π+–π, π–π, π–anion and π+–anion interactions assist the overall stabilization of self-assembly. In addition, we also identify the cation-mediated non-covalent interaction between two π anions (π−–π− interaction). The interaction energies of the important driving forces (π+–π+, π+–π, π–anion, π+–anion, and π−–π− interactions) observed in the crystal structure are calculated using dispersion-corrected density functional theory (DFT-D).


Journal of Physical Chemistry B | 2014

3-Picoline mediated self-assembly of M(II)-malonate complexes (M = Ni/Co/Mn/Mg/Zn/Cu) assisted by various weak forces involving lone pair-π, π-π, and anion···π-hole interactions.

Monojit Mitra; Prankrishna Manna; Antonio Bauzá; Pablo Ballester; Saikat Kumar Seth; Somnath Ray Choudhury; Antonio Frontera; Subrata Mukhopadhyay

Five M(II)-malonate complexes having a common formula (C(6)H(9)N(2))(4)[M(II)(C(3)H(2)O(4))(2)(H(2)O)(2)](PF(6))(2).(H(2)O)(2) (1-5) [where C(6)H(9)N(2) = protonated 3-picoline, M(II) = Ni/Co/Mn/Mg/Zn, C(3)H(4)O(4) = malonic acid, and PF(6)(-) = hexafluorophospahte], have been synthesized and their crystal structures have been determined. Complexes 1-5 were found to be isostructural and protonated 3-picoline has primarily mediated the self-assembly process. Role of a discrete water dimer in complexes 1-5 was also studied. Weaker π-interactions have also played crucial role in stabilizing 1D chain constructed by discrete [M(II)(C(3)H(2)O(4))(2)(H(2)O)(2)] units. An additional copper complex namely, (C(6)H(9)N(2))(4)[Cu(C(3)H(2)O(4))(2)](PF(6))(2) (6) has been synthesized from the same reagents and was found to have a completely different structure from the others. Structures of all the complexes are fully described and compared here. Moreover, the lone pair-π and π-π noncovalent interactions have been analyzed by means of DFT calculations, mainly focusing our attention to the influence of the coordinating metal on the strength of the interactions and the interplay between hydrogen bonding and π-interactions. We also present here Hirshfeld surface analysis to investigate the close intermolecular contacts.


Journal of Environmental Monitoring | 2002

Chemical oxidation of C. I. Reactive Red 2 using Fenton-like reactions

Kabita Dutta; Sekhar Bhattacharjee; Basab Chaudhuri; Subrata Mukhopadhyay

A detailed investigation on the kinetics of the oxidative degradation of a reactive dye, C. I. Reactive Red 2 by hydroxyl radicals generated by H202 and Fe2+ has been carried out in aqueous acidic media. Effects of different parameters like initial concentration of dye, H2O2, Fe2+, pH of the solution, reaction temperature and added electrolytes on the oxidation process have been studied. The results indicate that 1.63 x 10(-4) mol dm(-3) dye can be most effectively degraded at a dye: Fe2+: H2O2 molar ratio of 1:0.22: 8.13 at pH approximately 2.7 and at 299 K. The addition of excess 2-propanol or t-butyl alcohol, well known scavengers of hydroxyl radicals, almost stopped the degradation of the dye indicating the absence of any possible reductive pathways in the degradation. The results may be useful for designing the treatment systems of wastewater containing various reactive dyes.


CrystEngComm | 2013

Salt-bridge–π (sb–π) interactions at work: associative interactions of sb–π, π–π and anion–π in Cu(II)-malonate–2-aminopyridine–hexafluoridophosphate ternary system

Monojit Mitra; Prankrishna Manna; Saikat Kumar Seth; Amrita Das; Joanne Meredith; Madeleine Helliwell; Antonio Bauzá; Somnath Ray Choudhury; Antonio Frontera; Subrata Mukhopadhyay

An essentially unexplored noncovalent interaction involving aromatic rings is re-defined and described: the salt-bridge–π interaction. It consists of the stacking interaction between an aromatic ring and a planar salt-bridge. If the aromatic ring is located under the cation of the salt-bridge, the interaction must be described as a cation–π interaction. Similarly, if the aromatic ring is located under the anion of the salt-bridge, the interaction must be described as an anion–π interaction. However, if the aromatic ring is just in the middle of both, a new definition of noncovalent bonding is required. Herein, we propose the term “salt-bridge–π (sb–π) interaction” to describe the stacking between an aromatic ring and a planar salt-bridge (for example, guanidinium and carboxylate ion pair). We also report the synthesis and X-ray characterization of one Cu(II) malonate complex with protonated 2-aminopyridine as the auxiliary ligand, which is acting as the counter cation, namely, {(C5H7N2)6[Cu(C3H2O4)2(H2O)2][Cu(C3H2O4)2](PF6)2}n (A) (C5H7N2 = protonated 2-aminopyridine, C3H4O4 = malonic acid) where this type of interaction is observed. Other weak forces like hydrogen bonding, π⋯π stacking and anion⋯π interactions were also found to be responsible for the overall stabilisation of the complex A. Interestingly, an extended supramolecular network of the type sb–π/π–π/π–π/π–anion has been observed in the solid state structure of complex A. This outstanding network of weak forces was observed for the first time in the crystalline structures of metal–organic hybrid complexes. From this perspective, the self-assembly process appears to be of great importance in this complex. The analysis of the crystalline structure of A with an emphasis on exploring this rare supramolecular network is presented here. The theoretical study combines the energetic analysis of the noncovalent forces that participate in the extended supramolecular network and the characterization of the different interactions by means of Baders theory of “atoms in molecules”. We also present here Hirshfeld surface analysis to investigate the close intermolecular contacts.


Journal of Physical Chemistry A | 2009

Supramolecular Lone Pair-π/π-π/π-Anion Assembly in a Mg(II)-Malonate-2-Aminopyridine-Nitrate Ternary System

Somnath Ray Choudhury; Biswajit Dey; Suranjana Das; Patrick Gamez; Arturo Robertazzi; Kai-Ting Chan; Hon Man Lee; Subrata Mukhopadhyay

The solid-state structure of an alkaline-earth metal complex reveals the formation of a remarkable supramolecular framework based on concurrent lone pair-pi, pi-pi, and pi-anion interactions whose stability has been investigated by density functional theory.

Collaboration


Dive into the Subrata Mukhopadhyay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Frontera

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

Biswajit Dey

Visva-Bharati University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Bauzá

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge