Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sucheta Telang is active.

Publication


Featured researches published by Sucheta Telang.


Molecular Cancer Therapeutics | 2008

Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth

Brian Clem; Sucheta Telang; Amy Clem; Abdullah Yalcin; Jason Meier; Alan Simmons; Mary Ann Rasku; Sengodagounder Arumugam; William L. Dean; John W. Eaton; Andrew N. Lane; John O. Trent; Jason Chesney

6-Phosphofructo-1-kinase, a rate-limiting enzyme of glycolysis, is activated in neoplastic cells by fructose-2,6-bisphosphate (Fru-2,6-BP), a product of four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes (PFKFB1-4). The inducible PFKFB3 isozyme is constitutively expressed by neoplastic cells and required for the high glycolytic rate and anchorage-independent growth of ras-transformed cells. We report herein the computational identification of a small-molecule inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), which suppresses glycolytic flux and is cytostatic to neoplastic cells. 3PO inhibits recombinant PFKFB3 activity, suppresses glucose uptake, and decreases the intracellular concentration of Fru-2,6-BP, lactate, ATP, NAD+, and NADH. 3PO markedly attenuates the proliferation of several human malignant hematopoietic and adenocarcinoma cell lines (IC50, 1.4-24 μmol/L) and is selectively cytostatic to ras-transformed human bronchial epithelial cells relative to normal human bronchial epithelial cells. The PFKFB3 enzyme is an essential molecular target of 3PO because transformed cells are rendered resistant to 3PO by ectopic expression of PFKFB3 and sensitive to 3PO by heterozygotic genomic deletion of PFKFB3. Importantly, i.p. administration of 3PO (0.07 mg/g) to tumor-bearing mice markedly reduces the intracellular concentration of Fru-2,6-BP, glucose uptake, and growth of established tumors in vivo. Taken together, these data support the clinical development of 3PO and other PFKFB3 inhibitors as chemotherapeutic agents. [Mol Cancer Ther 2008;7(1):110–20]


Experimental and Molecular Pathology | 2009

Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.

Abdullah Yalcin; Sucheta Telang; Brian Clem; Jason Chesney

A high rate of glycolytic flux, even in the presence of oxygen, is a central metabolic hallmark of neoplastic tumors. Cancer cells preferentially utilize glycolysis in order to satisfy their increased energetic and biosynthetic requirements. This metabolic phenotype has been confirmed in human studies using positron emission tomography (PET) with (18)F-2-fluoro-deoxy-glucose which have demonstrated that tumors take up 10-fold more glucose than adjacent normal tissues in vivo. The high glucose metabolism of cancer cells is caused by a combination of hypoxia-responsive transcription factors, activation of oncogenic proteins and the loss of tumor suppressor function. Over-expression of HIF-1alpha and myc, activation of ras and loss of p53 function each have been found to stimulate glycolysis in part by activating a family of regulatory bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB). The PFKFB enzymes synthesize fructose-2,6-bisphosphate (F2,6BP) which allosterically activates 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in the glycolytic pathway. PFK-1 is inhibited by ATP when energy stores are abundant and F2,6BP can override this inhibition and enhance glucose uptake and glycolytic flux. It is therefore not surprising that F2,6BP synthesis is stimulated by several oncogenic alterations which simultaneously cause both enhanced consumption of glucose and growth. Importantly, these studies suggest that selective depletion of intracellular F2,6BP in cancer cells may suppress glycolytic flux and decrease their survival, growth and invasiveness. This review will summarize the requirement of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases for the regulation of glycolysis in tumor cells and their potential utility as targets for the development of antineoplastic agents.


Cell Metabolism | 2014

Partial and Transient Reduction of Glycolysis by PFKFB3 Blockade Reduces Pathological Angiogenesis

Sandra Schoors; Katrien De Bock; Anna Rita Cantelmo; Maria Georgiadou; Bart Ghesquière; Sandra Cauwenberghs; Anna Kuchnio; Brian W. Wong; Annelies Quaegebeur; Jermaine Goveia; Francesco Bifari; Xingwu Wang; Raquel Blanco; Bieke Tembuyser; Ann Bouché; Stefan Vinckier; Santiago Diaz-Moralli; Holger Gerhardt; Sucheta Telang; Marta Cascante; Jason Chesney; Mieke Dewerchin; Peter Carmeliet

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.


Breast Cancer Research | 2008

Targeting aspartate aminotransferase in breast cancer

Joshua Thornburg; Kristin Nelson; Brian Clem; Andrew N. Lane; Sengodagounder Arumugam; Allan Simmons; John W. Eaton; Sucheta Telang; Jason Chesney

IntroductionGlycolysis is increased in breast adenocarcinoma cells relative to adjacent normal cells in order to produce the ATP and anabolic precursors required for survival, growth and invasion. Glycolysis also serves as a key source of the reduced form of cytoplasmic nicotinamide adenine dinucleotide (NADH) necessary for the shuttling of electrons into mitochondria for electron transport. Lactate dehydrogenase (LDH) regulates glycolytic flux by converting pyruvate to lactate and has been found to be highly expressed in breast tumours. Aspartate aminotransferase (AAT) functions in tandem with malate dehydrogenase to transfer electrons from NADH across the inner mitochondrial membrane. Oxamate is an inhibitor of both LDH and AAT, and we hypothesised that oxamate may disrupt the metabolism and growth of breast adenocarcinoma cells.MethodsWe examined the effects of oxamate and the AAT inhibitor amino oxyacetate (AOA) on 13C-glucose utilisation, oxygen consumption, NADH and ATP in MDA-MB-231 cells. We then determined the effects of oxamate and AOA on normal human mammary epithelial cells and MDA-MB-231 breast adenocarcinoma cell proliferation, and on the growth of MDA-MB-231 cells as tumours in athymic BALB/c female mice. We ectopically expressed AAT in MDA-MB-231 cells and examined the consequences on the cytostatic effects of oxamate. Finally, we examined the effect of AAT-specific siRNA transfection on MDA-MB-231 cell proliferation.ResultsWe found that oxamate did not attenuate cellular lactate production as predicted by its LDH inhibitory activity, but did have an anti-metabolic effect that was similar to AAT inhibition with AOA. Specifically, we found that oxamate and AOA decreased the flux of 13C-glucose-derived carbons into glutamate and uridine, both products of the mitochondrial tricarboxylic acid cycle, as well as oxygen consumption, a measure of electron transport chain activity. Oxamate and AOA also selectively suppressed the proliferation of MDA-MB-231 cells relative to normal human mammary epithelial cells and decreased the growth of MDA-MB-231 breast tumours in athymic mice. Importantly, we found that ectopic expression of AAT in MDA-MB-231 cells conferred resistance to the anti-proliferative effects of oxamate and that siRNA silencing of AAT decreased MDA-MB-231 cell proliferation.ConclusionsWe conclude that AAT may be a valid molecular target for the development of anti-neoplastic agents.


Oncogene | 2006

Ras transformation requires metabolic control by 6-phosphofructo-2-kinase

Sucheta Telang; Abdullah Yalcin; Amy Clem; R Bucala; Andrew N. Lane; John W. Eaton; Jason Chesney

Neoplastic cells transport large amounts of glucose in order to produce anabolic precursors and energy within the inhospitable environment of a tumor. The ras signaling pathway is activated in several cancers and has been found to stimulate glycolytic flux to lactate. Glycolysis is regulated by ras via the activity of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFK2/FBPase), which modulate the intracellular concentration of the allosteric glycolytic activator, fructose-2,6-bisphosphate (F2,6BP). We report herein that sequential immortalization and ras-transformation of mouse fibroblasts or human bronchial epithelial cells paradoxically decreases the intracellular concentration of F2,6BP. This marked reduction in the intracellular concentration of F2,6BP sensitizes transformed cells to the antimetabolic effects of PFK2/FBPase inhibition. Moreover, despite co-expression of all four mRNA species (PFKFB1-4), heterozygotic genomic deletion of the inducible PFKFB3 gene in ras-transformed mouse lung fibroblasts suppresses F2,6BP production, glycolytic flux to lactate, and growth as soft agar colonies or tumors in athymic mice. These data indicate that the PFKFB3 protein product may serve as an essential downstream metabolic mediator of oncogenic ras, and we propose that pharmacologic inhibition of this enzyme should selectively suppress the high rate of glycolysis and growth by cancer cells.


Journal of Translational Medicine | 2008

Transient T cell depletion causes regression of melanoma metastases

Mary Ann Rasku; Amy Clem; Sucheta Telang; Beverly Taft; Kelly Gettings; Hana Gragg; Daniel W. Cramer; Sheron C. Lear; Kelly M. McMasters; Donald M. Miller; Jason Chesney

BackgroundCognate immunity against neoplastic cells depends on a balance between effector T cells and regulatory T (Treg) cells. Treg cells prevent immune attack against normal and neoplastic cells by directly suppressing the activation of effector CD4+ and CD8+ T cells. We postulated that a recombinant interleukin 2/diphtheria toxin conjugate (DAB/IL2; Denileukin Diftitox; Ontak) may serve as a useful strategy to deplete Treg cells and break tolerance against neoplastic tumors in humans.MethodsWe administered DAB/IL2 (12 μg/kg; four daily doses; 21 day cycles) to 16 patients with metastatic melanoma and measured the effects on the peripheral blood concentration of several T cell subsets and on tumor burden.ResultsWe found that DAB/IL2 caused a transient depletion of Treg cells as well as total CD4+ and CD8+ T cells (< 21 days). T cell repopulation coincided with the de novo appearance of melanoma antigen-specific CD8+ T cells in several patients as determined by flow cytometry using tetrameric MART-1, tyrosinase and gp100 peptide/MHC conjugates. Sixteen patients received at least one cycle of DAB/IL2 and five of these patients experienced regressions of melanoma metastases as measured by CT and/or PET imaging. One patient experienced a near complete response with the regression of several hepatic and pulmonary metastases coupled to the de novo appearance of MART-1-specific CD8+ T cells. A single metastatic tumor remained in this patient and, after surgical resection, immunohistochemical analysis revealed MART1+ melanoma cells surrounded by CD8+ T cells.ConclusionTaken together, these data indicate that transient depletion of T cells in cancer patients may disrupt the homeostatic control of cognate immunity and allow for the expansion of effector T cells with specificity against neoplastic cells. Several T cell depleting agents are clinically available and this study provides strong rationale for an examination of their efficacy in cancer patients.Trial registrationNCT00299689 (ClinicalTrials.gov Identifier).


Journal of Biological Chemistry | 2009

Nuclear Targeting of 6-Phosphofructo-2-kinase (PFKFB3) Increases Proliferation via Cyclin-dependent Kinases

Abdullah Yalcin; Brian Clem; Alan Simmons; Andrew N. Lane; Kristin Nelson; Amy Clem; Erin Brock; Deanna Siow; Binks W. Wattenberg; Sucheta Telang; Jason Chesney

The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1–4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.


Molecular Cancer Therapeutics | 2013

Targeting 6-Phosphofructo-2-Kinase (PFKFB3) as a Therapeutic Strategy against Cancer

Brian Clem; Julie O'Neal; Gilles Tapolsky; Amy Clem; Yoannis Imbert-Fernandez; Daniel Alan Kerr; Alden C. Klarer; Rebecca Redman; Donald M. Miller; John O. Trent; Sucheta Telang; Jason Chesney

In human cancers, loss of PTEN, stabilization of hypoxia inducible factor-1α, and activation of Ras and AKT converge to increase the activity of a key regulator of glycolysis, 6-phosphofructo-2-kinase (PFKFB3). This enzyme synthesizes fructose 2,6-bisphosphate (F26BP), which is an activator of 6-phosphofructo-1-kinase, a key step of glycolysis. Previously, a weak competitive inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), was found to reduce the glucose metabolism and proliferation of cancer cells. We have synthesized 73 derivatives of 3PO and screened each compound for activity against recombinant PFKFB3. One small molecule, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15), was selected for further preclinical evaluation of its pharmacokinetic, antimetabolic, and antineoplastic properties in vitro and in vivo. We found that PFK15 causes a rapid induction of apoptosis in transformed cells, has adequate pharmacokinetic properties, suppresses the glucose uptake and growth of Lewis lung carcinomas in syngeneic mice, and yields antitumor effects in three human xenograft models of cancer in athymic mice that are comparable to U.S. Food and Drug Administration–approved chemotherapeutic agents. As a result of this study, a synthetic derivative and formulation of PFK15 has undergone investigational new drug (IND)-enabling toxicology and safety studies. A phase I clinical trial of its efficacy in advanced cancer patients will initiate in 2013 and we anticipate that this new class of antimetabolic agents will yield acceptable therapeutic indices and prove to be synergistic with agents that disrupt neoplastic signaling. Mol Cancer Ther; 12(8); 1461–70. ©2013 AACR.


Cell Stem Cell | 2009

Mouse Fibroblasts Lacking RB1 Function Form Spheres and Undergo Reprogramming to a Cancer Stem Cell Phenotype

Yongqing Liu; Brian Clem; Ewa K. Zuba-Surma; Shahenda El-Naggar; Sucheta Telang; Alfred B. Jenson; Yali Wang; Hui Shao; Mariusz Z. Ratajczak; Jason Chesney; Douglas C. Dean

Activation of the RB1 pathway triggers the cell-cycle arrest that mediates cell-cell contact inhibition. Accordingly, mutation of all three RB1 family members leads to loss of contact inhibition and outgrowth of fibroblasts into spheres where cell-cell contacts predominate. We present evidence that such outgrowth triggers reprogramming to generate cells with properties of cancer stem cells. Fibroblasts with only a single RB1 mutation remain contact inhibited; however, if this contact inhibition is bypassed by forcing the RB1(-/-) cells to form spheres in suspension, cells with properties of cancer stem cells are also generated. These cells not only form tumors in nude mice but also generate differentiated cells. We propose that contact inhibition imposed by the RB1 pathway performs an unexpected tumor suppressor function by preventing cell outgrowth into structures where cells with properties of cancer stem cells can be generated from differentiated somatic cells in advancing cancers.


Oncogene | 2010

Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling.

Abdullah Yalcin; Brian Clem; S Makoni; Amy Clem; Kristin Nelson; Joshua Thornburg; Deanna Siow; Andrew N. Lane; S E Brock; Umesh Goswami; John W. Eaton; Sucheta Telang; Jason Chesney

Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-RasV12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feed-forward amplification of cancer survival signaling pathways.

Collaboration


Dive into the Sucheta Telang's collaboration.

Top Co-Authors

Avatar

Jason Chesney

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Brian Clem

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Amy Clem

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

John O. Trent

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Eaton

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge