Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sudeepta Aggarwal is active.

Publication


Featured researches published by Sudeepta Aggarwal.


Diabetes | 2012

Rapamycin/IL-2 Combination Therapy in Patients with Type 1 Diabetes Augments Tregs yet Transiently Impairs β-Cell Function

S. Alice Long; Mary Rieck; Srinath Sanda; Jennifer Bollyky; P. L. Samuels; Robin Goland; Andrew J. Ahmann; Alex Rabinovitch; Sudeepta Aggarwal; Deborah Phippard; Laurence A. Turka; Mario R. Ehlers; Peter Bianchine; Karen D. Boyle; Steven A. Adah; Jeffrey A. Bluestone; Jane H. Buckner; Carla J. Greenbaum

Rapamycin/interleukin-2 (IL-2) combination treatment of NOD mice effectively treats autoimmune diabetes. We performed a phase 1 clinical trial to test the safety and immunologic effects of rapamycin/IL-2 combination therapy in type 1 diabetic (T1D) patients. Nine T1D subjects were treated with 2–4 mg/day rapamycin orally for 3 months and 4.5 × 106 IU IL-2 s.c. three times per week for 1 month. β-Cell function was monitored by measuring C-peptide. Immunologic changes were monitored using flow cytometry and serum analyses. Regulatory T cells (Tregs) increased within the first month of therapy, yet clinical and metabolic data demonstrated a transient worsening in all subjects. The increase in Tregs was transient, paralleling IL-2 treatment, whereas the response of Tregs to IL-2, as measured by STAT5 phosphorylation, increased and persisted after treatment. No differences were observed in effector T-cell subset frequencies, but an increase in natural killer cells and eosinophils occurred with IL-2 therapy. Rapamycin/IL-2 therapy, as given in this phase 1 study, resulted in transient β-cell dysfunction despite an increase in Tregs. Such results highlight the difficulties in translating therapies to the clinic and emphasize the importance of broadly interrogating the immune system to evaluate the effects of therapy.


Diabetes | 2013

Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: Metabolic and immunologic features at baseline identify a subgroup of responders

Kevan C. Herold; Stephen E. Gitelman; Mario R. Ehlers; Peter A. Gottlieb; Carla J. Greenbaum; William Hagopian; Karen D. Boyle; Lynette Keyes-Elstein; Sudeepta Aggarwal; Deborah Phippard; Peter Sayre; James McNamara; Jeffrey A. Bluestone

Trials of immune therapies in new-onset type 1 diabetes (T1D) have shown success, but not all subjects respond, and the duration of response is limited. Our aim was to determine whether two courses of teplizumab, an Fc receptor–nonbinding anti-CD3 monoclonal antibody, reduces the decline in C-peptide levels in patients with T1D 2 years after disease onset. We also set out to identify characteristics of responders. We treated 52 subjects with new-onset T1D with teplizumab for 2 weeks at diagnosis and after 1 year in an open-label, randomized, controlled trial. In the intent to treat analysis of the primary end point, patients treated with teplizumab had a reduced decline in C-peptide at 2 years (mean −0.28 nmol/L [95% CI −0.36 to −0.20]) versus control (mean −0.46 nmol/L [95% CI −0.57 to −0.35]; P = 0.002), a 75% improvement. The most common adverse events were rash, transient upper respiratory infections, headache, and nausea. In a post hoc analysis we characterized clinical responders and found that metabolic (HbA1c and insulin use) and immunologic features distinguished this group from those who did not respond to teplizumab. We conclude that teplizumab treatment preserves insulin production and reduces the use of exogenous insulin in some patients with new-onset T1D. Metabolic and immunologic features at baseline can identify a subgroup with robust responses to immune therapy.


The Lancet Diabetes & Endocrinology | 2013

Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial

Mark R. Rigby; Linda A. DiMeglio; Marc Rendell; Eric I. Felner; Jean M. Dostou; Stephen E. Gitelman; Chetanbabu M Patel; Kurt J. Griffin; Eva Tsalikian; Peter A. Gottlieb; Carla J. Greenbaum; Nicole A. Sherry; Wayne V. Moore; Roshanak Monzavi; Steven M. Willi; Philip Raskin; Antoinette Moran; William E. Russell; Ashley Pinckney; Lynette Keyes-Elstein; Michael Howell; Sudeepta Aggarwal; Noha Lim; Deborah Phippard; Gerald T. Nepom; James McNamara; Mario R. Ehlers

BACKGROUND Type 1 diabetes results from autoimmune targeting of the pancreatic β cells, likely mediated by effector memory T (Tem) cells. CD2, a T cell surface protein highly expressed on Tem cells, is targeted by the fusion protein alefacept, depleting Tem cells and central memory T (Tcm) cells. We postulated that alefacept would arrest autoimmunity and preserve residual β cells in patients newly diagnosed with type 1 diabetes. METHODS The T1DAL study is a phase 2, double-blind, placebo-controlled trial in patients with type 1 diabetes, aged 12-35 years who, within 100 days of diagnosis, were enrolled at 14 US sites. Patients were randomly assigned (2:1) to receive alefacept (two 12-week courses of 15 mg intramuscularly per week, separated by a 12-week pause) or a placebo. Randomisation was stratified by site, and was computer-generated with permuted blocks of three patients per block. All participants and site personnel were masked to treatment assignment. The primary endpoint was the change from baseline in mean 2 h C-peptide area under the curve (AUC) at 12 months. Secondary endpoints at 12 months were the change from baseline in the 4 h C-peptide AUC, insulin use, major hypoglycaemic events, and HbA1c concentrations. This trial is registered with ClinicalTrials.gov, number NCT00965458. FINDINGS Of 73 patients assessed for eligibility, 33 were randomly assigned to receive alefacept and 16 to receive placebo. The mean 2 h C-peptide AUC at 12 months increased by 0.015 nmol/L (95% CI -0.080 to 0.110) in the alefacept group and decreased by 0.115 nmol/L (-0.278 to 0.047) in the placebo group, and the difference between groups was not significant (p=0.065). However, key secondary endpoints were met: the mean 4 h C-peptide AUC was significantly higher (mean increase of 0.015 nmol/L [95% CI -0.076 to 0.106] vs decrease of -0.156 nmol/L [-0.305 to -0.006]; p=0.019), and daily insulin use (0.48 units per kg per day for placebo vs 0.36 units per kg per day for alefacept; p=0.02) and the rate of hypoglycaemic events (mean of 10.9 events per person per year for alefacept vs 17.3 events for placebo; p<0.0001) was significantly lower at 12 months in the alefacept group than in the placebo group. Mean HbA1c concentrations at week 52 were not different between treatment groups (p=0.75). So far, no serious adverse events were reported and all patients had at least one adverse event. In the alefacept group, 29 (88%) participants had an adverse event related to study drug versus 15 (94%) participants in the placebo group. In the alefacept group, 14 (42%) participants had grade 3 or 4 adverse events compared with nine (56%) participants in the placebo group; no deaths occurred. INTERPRETATION Although the primary outcome was not met, at 12 months, alefacept preserved the 4 h C-peptide AUC, lowered insulin use, and reduced hypoglycaemic events, suggesting efficacy. Safety and tolerability were similar in the alefacept and placebo groups. Alefacept could be useful to preserve β-cell function in patients with new-onset type 1 diabetes.Background Type 1 diabetes (T1D) results from autoimmune targeting of the pancreatic beta cells, likely mediated by effector memory T cells (Tems). CD2, a T cell surface protein highly expressed on Tems, is targeted by the fusion protein alefacept, depleting Tems and central memory T cells (Tcms). We hypothesized that alefacept would arrest autoimmunity and preserve residual beta cells in newly diagnosed T1D.


The Lancet Diabetes & Endocrinology | 2013

Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial

Stephen E. Gitelman; Peter A. Gottlieb; Mark R. Rigby; Eric I. Felner; Steven M. Willi; Lynda K. Fisher; Antoinette Moran; Michael Gottschalk; Wayne V. Moore; Ashley Pinckney; Lynette Keyes-Elstein; Sudeepta Aggarwal; Deborah Phippard; Peter Sayre; Linna Ding; Jeffrey A. Bluestone; Mario R. Ehlers

BACKGROUND Type 1 diabetes results from T-cell-mediated destruction of β cells. Findings from preclinical studies and pilot clinical trials suggest that antithymocyte globulin (ATG) might be effective for reducing this autoimmune response. We assessed the safety and efficacy of rabbit ATG in preserving islet function in participants with recent-onset type 1 diabetes, and report here our 12-month results. METHODS For this phase 2, randomised, placebo-controlled, clinical trial, we enrolled patients with recent-onset type 1 diabetes, aged 12-35 years, and with a peak C-peptide of 0.4 nM or greater on mixed meal tolerance test from 11 sites in the USA. We used a computer generated randomisation sequence to randomly assign patients (2:1, with permuted-blocks of size three or six and stratified by study site) to receive either 6.5 mg/kg ATG or placebo over a course of four days. All participants were masked and initially managed by an unmasked drug management team, which managed all aspects of the study until month 3. Thereafter, to maintain masking for diabetes management throughout the remainder of the study, participants received diabetes management from an independent, masked study physician and nurse educator. The primary endpoint was the baseline-adjusted change in 2-h area under the curve C-peptide response to mixed meal tolerance test from baseline to 12 months. Analyses were by intention to treat. This is a planned interim analysis of an on-going trial that will run for 24 months of follow-up. This study is registered with ClinicalTrials.gov, number NCT00515099. FINDINGS Between Sept 10, 2007, and June 1, 2011, we screened 154 individuals, randomly allocating 38 to ATG and 20 to placebo. We recorded no between-group difference in the primary endpoint: participants in the ATG group had a mean change in C-peptide area under the curve of -0.195 pmol/mL (95% CI -0.292 to -0.098) and those in the placebo group had a mean change of -0.239 pmol/mL (-0.361 to -0.118) in the placebo group (p=0.591). All except one participant in the ATG group had both cytokine release syndrome and serum sickness, which was associated with a transient rise in interleukin-6 and acute-phase proteins. Acute T cell depletion occurred in the ATG group, with slow reconstitution over 12 months. However, effector memory T cells were not depleted, and the ratio of regulatory to effector memory T cells declined in the first 6 months and stabilised thereafter. ATG-treated patients had 159 grade 3-4 adverse events, many associated with T-cell depletion, compared with 13 in the placebo group, but we detected no between-group difference in incidence of infectious diseases. INTERPRETATION Our findings suggest that a brief course of ATG does not result in preservation of β-cell function 12 months later in patients with new-onset type 1 diabetes. Generalised T-cell depletion in the absence of specific depletion of effector memory T cells and preservation of regulatory T cells seems to be an ineffective treatment for type 1 diabetes.


Diabetes Technology & Therapeutics | 2015

Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study)

Mark R. Rigby; Linda A. DiMeglio; Marc Rendell; Eric I. Felner; Jean M. Dostou; Stephen E. Gitelman; Chetanbabu M Patel; Kurt J. Griffin; Eva Tsalikian; Peter A. Gottlieb; Carla J. Greenbaum; Nicole A. Sherry; Wayne V. Moore; Roshanak Monzavi; Steven M. Willi; Philip Raskin; Antoinette Moran; William E. Russell; Ashley Pinckney; Lynette Keyes-Elstein; Michael L. Howell; Sudeepta Aggarwal; Noha Lim; Deborah Phippard; Gerald T. Nepom; James McNamara; Mario R. Ehlers

This article of the yearbook of Advanced Technology and Treatments in Diabetes reviews several clinical studies that have appeared between July 2013 and August 2014 in the area of immune intervention in type 1 diabetes (T1D). The first article discussed is the first results from the Trial to Reduce IDDM in the Genetically at Risk (TRIGR), a much anticipated primary prevention trial. Hydrolyzed infant formula and early β-cell autoimmunity: a randomized clinical trial Knip M1, Akerblom HK1, Becker D2, Dosch HM3, Dupre J4, Fraser W5, Howard N6, Ilonen J7, Krischer JP8, Kordonouri O9, Lawson ML10, Palmer JP11, Savilahti E1, Vaarala O12, Virtanen SM12; TRIGR Study Group 1University of Helsinki, Helsinki, Finland; 2University of Pittsburgh, Pittsburgh, PA; 3University of Toronto, Toronto, Ontario, Canada; 4University of Western Ontario, London, Canada; 5University of Montreal, Montreal, Quebec, Canada; 6Childrens Hospital of Westmead, Sydney, Australia; 7University of Turku, Turku, Finland; 8University of South Florida, Tampa; 9Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany; 10Childrens Hospital of Eastern Ontario, Ottawa, Ontario, Canada; 11University of Washington, Seattle, WA; and 12National Institute for Health and Welfare, Helsinki, Finland JAMA 2014; 311: 2279–87 Background Short duration of breast-feeding and/or early exposure to complex dietary proteins have been implicated as potential risk factors for β-cell autoimmunity and T1D. Extensively hydrolyzed formulas do not contain intact proteins. The Trial to test Reduce IDDM in the Genetically at Risk (TRIGR) Study was designed to test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of T1D in young children. Presentation of clinical T1D by age 10 years is the primary outcome of TRIGR, while positivity for 2 or more diabetes-associated autoantibodies by age 6 years is a secondary outcome, presented in this article.


Diabetes Technology & Therapeutics | 2015

Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomized, double-blind, placebo-controlled phase 2 trial

Mark R. Rigby; Linda A. DiMeglio; Marc Rendell; Eric I. Felner; Jean M. Dostou; Stephen E. Gitelman; Chetanbabu M Patel; Kurt J. Griffin; Eva Tsalikian; Peter A. Gottlieb; Carla J. Greenbaum; Nicole A. Sherry; Wayne V. Moore; Roshanak Monzavi; Steven M. Willi; Philip Raskin; Antoinette Moran; William E. Russell; Ashley Pinckney; Lynette Keyes-Elstein; Michael Howell; Sudeepta Aggarwal; Noha Lim; Deborah Phippard; Gerald T. Nepom; James McNamara; Mario R. Ehlers

This article of the yearbook of Advanced Technology and Treatments in Diabetes reviews several clinical studies that have appeared between July 2013 and August 2014 in the area of immune intervention in type 1 diabetes (T1D). The first article discussed is the first results from the Trial to Reduce IDDM in the Genetically at Risk (TRIGR), a much anticipated primary prevention trial. Hydrolyzed infant formula and early β-cell autoimmunity: a randomized clinical trial Knip M1, Akerblom HK1, Becker D2, Dosch HM3, Dupre J4, Fraser W5, Howard N6, Ilonen J7, Krischer JP8, Kordonouri O9, Lawson ML10, Palmer JP11, Savilahti E1, Vaarala O12, Virtanen SM12; TRIGR Study Group 1University of Helsinki, Helsinki, Finland; 2University of Pittsburgh, Pittsburgh, PA; 3University of Toronto, Toronto, Ontario, Canada; 4University of Western Ontario, London, Canada; 5University of Montreal, Montreal, Quebec, Canada; 6Childrens Hospital of Westmead, Sydney, Australia; 7University of Turku, Turku, Finland; 8University of South Florida, Tampa; 9Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany; 10Childrens Hospital of Eastern Ontario, Ottawa, Ontario, Canada; 11University of Washington, Seattle, WA; and 12National Institute for Health and Welfare, Helsinki, Finland JAMA 2014; 311: 2279–87 Background Short duration of breast-feeding and/or early exposure to complex dietary proteins have been implicated as potential risk factors for β-cell autoimmunity and T1D. Extensively hydrolyzed formulas do not contain intact proteins. The Trial to test Reduce IDDM in the Genetically at Risk (TRIGR) Study was designed to test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of T1D in young children. Presentation of clinical T1D by age 10 years is the primary outcome of TRIGR, while positivity for 2 or more diabetes-associated autoantibodies by age 6 years is a secondary outcome, presented in this article.


The Lancet Diabetes & Endocrinology | 2013

Targeting effector memory T cells with alefacept in new onset type 1 diabetes: 12 month results from the T1DAL study

Mark R. Rigby; Linda A. DiMeglio; Marc Rendell; Eric I. Felner; Jean M. Dostou; Stephen E. Gitelman; Chetanbabu M Patel; Kurt J. Griffin; Eva Tsalikian; Peter A. Gottlieb; Carla J. Greenbaum; Nicole A. Sherry; Wayne V. Moore; Roshanak Monzavi; Steven M. Willi; Philip Raskin; Antoinette Moran; William E. Russell; Ashley Pinckney; Lynette Keyes-Elstein; Michael D. Howell; Sudeepta Aggarwal; Noha Lim; Deborah Phippard; Gerald T. Nepom; James McNamara; Mario R. Ehlers

BACKGROUND Type 1 diabetes results from autoimmune targeting of the pancreatic β cells, likely mediated by effector memory T (Tem) cells. CD2, a T cell surface protein highly expressed on Tem cells, is targeted by the fusion protein alefacept, depleting Tem cells and central memory T (Tcm) cells. We postulated that alefacept would arrest autoimmunity and preserve residual β cells in patients newly diagnosed with type 1 diabetes. METHODS The T1DAL study is a phase 2, double-blind, placebo-controlled trial in patients with type 1 diabetes, aged 12-35 years who, within 100 days of diagnosis, were enrolled at 14 US sites. Patients were randomly assigned (2:1) to receive alefacept (two 12-week courses of 15 mg intramuscularly per week, separated by a 12-week pause) or a placebo. Randomisation was stratified by site, and was computer-generated with permuted blocks of three patients per block. All participants and site personnel were masked to treatment assignment. The primary endpoint was the change from baseline in mean 2 h C-peptide area under the curve (AUC) at 12 months. Secondary endpoints at 12 months were the change from baseline in the 4 h C-peptide AUC, insulin use, major hypoglycaemic events, and HbA1c concentrations. This trial is registered with ClinicalTrials.gov, number NCT00965458. FINDINGS Of 73 patients assessed for eligibility, 33 were randomly assigned to receive alefacept and 16 to receive placebo. The mean 2 h C-peptide AUC at 12 months increased by 0.015 nmol/L (95% CI -0.080 to 0.110) in the alefacept group and decreased by 0.115 nmol/L (-0.278 to 0.047) in the placebo group, and the difference between groups was not significant (p=0.065). However, key secondary endpoints were met: the mean 4 h C-peptide AUC was significantly higher (mean increase of 0.015 nmol/L [95% CI -0.076 to 0.106] vs decrease of -0.156 nmol/L [-0.305 to -0.006]; p=0.019), and daily insulin use (0.48 units per kg per day for placebo vs 0.36 units per kg per day for alefacept; p=0.02) and the rate of hypoglycaemic events (mean of 10.9 events per person per year for alefacept vs 17.3 events for placebo; p<0.0001) was significantly lower at 12 months in the alefacept group than in the placebo group. Mean HbA1c concentrations at week 52 were not different between treatment groups (p=0.75). So far, no serious adverse events were reported and all patients had at least one adverse event. In the alefacept group, 29 (88%) participants had an adverse event related to study drug versus 15 (94%) participants in the placebo group. In the alefacept group, 14 (42%) participants had grade 3 or 4 adverse events compared with nine (56%) participants in the placebo group; no deaths occurred. INTERPRETATION Although the primary outcome was not met, at 12 months, alefacept preserved the 4 h C-peptide AUC, lowered insulin use, and reduced hypoglycaemic events, suggesting efficacy. Safety and tolerability were similar in the alefacept and placebo groups. Alefacept could be useful to preserve β-cell function in patients with new-onset type 1 diabetes.Background Type 1 diabetes (T1D) results from autoimmune targeting of the pancreatic beta cells, likely mediated by effector memory T cells (Tems). CD2, a T cell surface protein highly expressed on Tems, is targeted by the fusion protein alefacept, depleting Tems and central memory T cells (Tcms). We hypothesized that alefacept would arrest autoimmunity and preserve residual beta cells in newly diagnosed T1D.


Diabetes Technology & Therapeutics | 2014

Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial

Kevan C. Herold; Stephen E. Gitelman; Mario R. Ehlers; Peter A. Gottlieb; Carla J. Greenbaum; William Hagopian; Karen D. Boyle; Lynette Keyes-Elstein; Sudeepta Aggarwal; Deborah Phippard; Peter Sayre; James McNamara; Jeffrey A. Bluestone


Diabetes Technology & Therapeutics | 2014

Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes

Stephen E. Gitelman; Peter A. Gottlieb; Mark R. Rigby; Eric I. Felner; Steven M. Willi; Lynda K. Fisher; Antoinette Moran; Michael Gottschalk; Wayne V. Moore; Ashley Pinckney; Lynette Keyes-Elstein; Sudeepta Aggarwal; Deborah Phippard; Peter Sayre; Linna Ding; Jeffrey A. Bluestone; Mario R. Ehlers


Diabetes Technology & Therapeutics | 2014

Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo controlled, phase 2 trial

Stephen E. Gitelman; Peter A. Gottlieb; Mark R. Rigby; Eric I. Felner; Steven M. Willi; Lynda K. Fisher; Antoinette Moran; Michael Gottschalk; Wayne V. Moore; Ashley Pinckney; Lynette Keyes-Elstein; Sudeepta Aggarwal; Deborah Phippard; Peter Sayre; Linna Ding; Jeffrey A. Bluestone; Mario R. Ehlers

Collaboration


Dive into the Sudeepta Aggarwal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla J. Greenbaum

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Willi

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge