Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sudha Agarwal is active.

Publication


Featured researches published by Sudha Agarwal.


Biomaterials | 2000

A new peptide-based urethane polymer: Synthesis, biodegradation, and potential to support cell growth in vitro

Jianying Zhang; Eric J. Beckman; Nicholas P. Piesco; Sudha Agarwal

A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI-glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI-glycerol matrix degraded in aqueous solutions at 100, 37, 22, and 4 degrees C at a rate of 27.7, 1.8, 0.8, and 0.1 mM per 10 days, respectively. Its thermal stability in water allowed its sterilization by autoclaving. The degradation of the LDI-glycerol polymer yielded lysine, ethanol, and glycerol as breakdown products. The degradation products of LDI-glycerol polymer did not significantly affect the pH of the solution. The glass transition temperature (Tg) of this polymer was found to be 103.4 degrees C. The physical properties of the polymer network were found to be adequate to support the cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSC) attached to the polymer matrix and remained viable on its surface. Culture of BMSC on LDI-glycerol matrix for long durations resulted in the formation of multilayered confluent cultures, a characteristic typical of bone cells. Furthermore, cells grown on LDI-glycerol matrix did not differ phenotypically from the cells grown on the tissue culture polystyrene plates as assessed by the cell growth, and expression of mRNA for collagen type I, and transforming growth factor-beta1 (TGF-beta1). The observations suggest that biodegradable peptide-based urethane polymers can be synthesized which may pave their way for possible use in tissue engineering applications.


Journal of Dental Research | 1995

Differential Expression of IL-1β, TNF-α, IL-6, and IL-8 in Human Monocytes in Response to Lipopolysaccharides from Different Microbes

Sudha Agarwal; Nicholas P. Piesco; L.P. Johns; A.E. Riccelli

Macrophages respond to bacterial lipopolysaccharides (LPS) and activate several host defense functions through production of mediators. However, it is not clear whether the degree of macrophage responsiveness to different sources of LPS is equivalent to or varies with the source of LPS. Therefore, in this report, we examined the extent of the human monocyte response to LPS derived from two oral pathogens, Actinobacillus actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg). Additionally, due to its well-established ability to activate monocytes, we used LPS from Escherichia coli (Ec). Human monocytes, when activated with a specific source of LPS, exhibited rapid expression of mRNA for IL-1β, TNF-a, and IL-8, which was followed by IL-6, as measured by RNA-PCR. Moreover, the expression of mRNA for these cytokines was followed by cytokine synthesis. Monocytes from the same subject, when activated with LPS from Pg, Aa, or Ec expressed quantitatively different levels of mRNA and proteins for all four cytokines. A given LPS induced either high or low expression of the battery of cytokines tested, indicating that the expression of these pro-inflammatory cytokines may be regulated by a single or a cluster of gene(s). However, no apparent differences in the time course of mRNA expression for these cytokines were observed in response to any of the LPS tested. Furthermore, the relative ability of the different sources of LPS to induce mRNA for cytokines varied throughout a wide range of LPS concentrations. This suggests that differences exist in the sensitivity of monocytes to a specific LPS, rather than in the kinetics of the secretory process itself. The ability of LPS to induce cytokine-specific mRNA also depended on the source of monocytes. Our results demonstrate that monocyte activation and cytokine release depend on the physicochemical form of LPS as well as the source of monocytes. These critical determinants may be significant in the pathogenesis of periodontal infections.


Journal of Biomechanics | 2008

Compressive forces induce osteogenic gene expression in calvarial osteoblasts

Bjoern Rath; Jin Nam; Thomas J. Knobloch; John J. Lannutti; Sudha Agarwal

Bone cells and their precursors are sensitive to changes in their biomechanical environment. The importance of mechanical stimuli has been observed in bone homeostasis and osteogenesis, but the mechanisms responsible for osteogenic induction in response to mechanical signals are poorly understood. We hypothesized that compressive forces could exert an osteogenic effect on osteoblasts and act in a dose-dependent manner. To test our hypothesis, electrospun poly(epsilon-caprolactone) (PCL) scaffolds were used as a 3-D microenvironment for osteoblast culture. The scaffolds provided a substrate allowing cell exposure to levels of externally applied compressive force. Pre-osteoblasts adhered, proliferated and differentiated in the scaffolds and showed extensive matrix synthesis by scanning electron microscopy (SEM) and increased Youngs modulus (136.45+/-9.15 kPa) compared with acellular scaffolds (24.55+/-8.5 kPa). Exposure of cells to 10% compressive strain (11.81+/-0.42 kPa) resulted in a rapid induction of bone morphogenic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), and MAD homolog 5 (Smad5). These effects further enhanced the expression of genes and proteins required for extracellular matrix (ECM) production, such as alkaline phosphatase (Akp2), collagen type I (Col1a1), osteocalcin/bone gamma carboxyglutamate protein (OC/Bglap), osteonectin/secreted acidic cysteine-rich glycoprotein (ON/Sparc) and osteopontin/secreted phosphoprotein 1 (OPN/Spp1). Exposure of cell-scaffold constructs to 20% compressive strain (30.96+/-2.82 kPa) demonstrated that these signals are not osteogenic. These findings provide the molecular basis for the experimental and clinical observations that appropriate physical activities or microscale compressive loading can enhance fracture healing due in part to the anabolic osteogenic effects.


Journal of Immunology | 2000

Cyclic Tensile Strain Acts as an Antagonist of IL-1β Actions in Chondrocytes

Zhongfa Xu; Michael J. Buckley; Christopher H. Evans; Sudha Agarwal

Inflammatory cytokines play a major role in cartilage destruction in diseases such as osteoarthritis and rheumatoid arthritis. Because physical therapies such as continuous passive motion yield beneficial effects on inflamed joints, we examined the intracellular mechanisms of mechanical strain-mediated actions in chondrocytes. By simulating the effects of continuous passive motion with cyclic tensile strain (CTS) on chondrocytes in vitro, we show that CTS is a potent antagonist of IL-1β actions and acts as both an anti-inflammatory and a reparative signal. Low magnitude CTS suppresses IL-1β-induced mRNA expression of multiple proteins involved in catabolic responses, such as inducible NO synthase, cyclo-oxygenase II, and collagenase. CTS also counteracts cartilage degradation by augmenting mRNA expression for tissue inhibitor of metalloproteases and collagen type II that are inhibited by IL-1β. Additionally, CTS augments the reparative process via hyperinduction of aggrecan mRNA expression and abrogation of IL-1β-induced suppression of proteoglycan synthesis. Nonetheless, the presence of an inflammatory signal is a prerequisite for the observed CTS actions, as exposure of chondrocytes to CTS alone has little effect on these parameters. Functional analysis suggests that CTS-mediated anti-inflammatory actions are not mediated by IL-1R down-regulation. Moreover, as an effective antagonist of IL-1β, the actions of CTS may involve disruption/regulation of signal transduction cascade of IL-1β upstream of mRNA transcription. These observations are the first to show that CTS directly acts as an anti-inflammatory signal on chondrocytes and provide a molecular basis for its actions.


Current Opinion in Clinical Nutrition and Metabolic Care | 2003

Signal transduction by mechanical strain in chondrocytes

James Deschner; Cynthia R. Hofman; Nicholas P. Piesco; Sudha Agarwal

&NA; The beneficial effects of physiological levels of mechanical signals or exercise may be explained by their ability to suppress the signal transduction pathways of proinflammatory/catabolic mediators, while stimulating anabolic pathways. Whether these anabolic signals are a consequence of the inhibition of nuclear factor kappa B or are mediated via distinct anabolic pathways is yet to be elucidated. Purpose of review Exercise and passive motion exert reparative effects on inflamed joints, whereas excessive mechanical forces initiate cartilage destruction as observed in osteoarthritis. However, the intracellular mechanisms that convert mechanical signals into biochemical events responsible for cartilage destruction and repair remain paradoxical. This review summarizes how signals generated by mechanical stress may initiate repair or destruction of cartilage. Recent findings Mechanical strain of low magnitude inhibits inflammation by suppressing IL‐1&bgr; and TNF‐&agr;‐induced transcription of multiple proinflammatory mediators involved in cartilage degradation. This also results in the upregulation of proteoglycan and collagen synthesis that is drastically inhibited in inflamed joints. On the contrary, mechanical strain of high magnitude is proinflammatory and initiates cartilage destruction while inhibiting matrix synthesis. Investigations reveal that mechanical signals exploit nuclear factor‐kappa B as a common pathway for transcriptional inhibition/activation of proinflammatory genes to control catabolic processes in chondrocytes. Mechanical strain of low magnitude prevents nuclear translocation of nuclear factor kappa B, resulting in the suppression of proinflammatory gene expression, whereas mechanical strain of high magnitude induces transactivation of nuclear factor kappa B, and thus proinflammatory gene induction.


Tissue Engineering | 2002

Synthesis, Biodegradability, and Biocompatibility of Lysine Diisocyanate–Glucose Polymers

Jianying Zhang; Eric J. Beckman; Jing Hu; Guoguang Yang; Sudha Agarwal; Jeffrey O. Hollinger

The success of a tissue-engineering application depends on the use of suitable biomaterials that degrade in a timely manner and induce the least immunogenicity in the host. With this purpose in mind, we have attempted to synthesize a novel nontoxic biodegradable lysine diisocyanate (LDI)- and glucose-based polymer via polymerization of highly purified LDI with glucose and its subsequent hydration to form a spongy matrix. The LDI-glucose polymer was degradable in aqueous solutions at 37, 22, and 4 degrees C, and yielded lysine and glucose as breakdown products. The degradation products of the LDI-glucose polymer did not significantly affect the pH of the solution. The physical properties of the polymer were found to be adequate for supporting cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSCs) attached to the polymer matrix, remained viable on its surface, and formed multilayered confluent cultures with retention of their phenotype over a period of 2 to 4 weeks. These observations suggest that the LDI-glucose polymer and its degradation products were nontoxic in vitro. Further examination in vivo over 8 weeks revealed that subcutaneous implantation of hydrated matrix degraded in vivo three times faster than in vitro. The implanted polymer was not immunogenic and did not induce antibody responses in the host. Histological analysis of the implanted polymer showed that LDI-glucose polymer induced a minimal foreign body reaction, with formation of a capsule around the degrading polymer. The results suggest that biodegradable peptide-based polymers can be synthesized, and may potentially find their way into biomedical applications because of their biodegradability and biocompatibility.


Journal of Endodontics | 2004

Effect of Propolis on Human Fibroblasts from the Pulp and Periodontal Ligament

Abdul Al-Shaher; James A. Wallace; Sudha Agarwal; Walter A. Bretz; Dean Baugh

Propolis, a flavonoid-rich product of honey comb, exhibits antibacterial and anti-inflammatory properties. In this study, we examined the tolerance of fibroblasts of the periodontal ligament (PDL) and dental pulp to propolis and compared with that of calcium hydroxide in vitro. Cells from human dental pulp and PDL were obtained from healthy third molars and subjected to various concentrations of propolis (0-20 mg/ml) and calcium hydroxide (0-250 mg/ml). The cell viability after propolis treatment was analyzed by crystal violet staining of the cells followed by spectrophotometric analysis. Data revealed that exposure of PDL cells or pulp fibroblasts to 4 mg/ml or lower concentrations of propolis resulted in >75% viability of cells. On the contrary, calcium hydroxide 0.4 mg/ml was cytotoxic and <25% of the cells were found to be viable. Further investigations may find propolis to be a possible alternative for an intracanal antimicrobial agent.


Biotechnology and Bioengineering | 2009

Fabrication of Skeletal Muscle Constructs by Topographic Activation of Cell Alignment

Yi Zhao; Hansong Zeng; Jin Nam; Sudha Agarwal

Skeletal muscle fiber construction for tissue‐engineered grafts requires assembly of unidirectionally aligned juxtaposed myotubes. To construct such a tissue, a polymer microchip with linearly aligned microgrooves was fabricated that could direct myoblast adaptation under stringent conditions. The closely spaced microgrooves fabricated by a modified replica molding process guided linear cellular alignment. Examination of the myoblasts by immunofluorescence microscopy demonstrated that the microgrooves with subcellular widths and appropriate height‐to‐width ratios were required for practically complete linear alignment of myoblasts. The topology‐dependent cell alignment encouraged differentiation of myoblasts into multinucleate, myosin heavy chain positive myotubes. The monolayer of myotubes formed on the microstructured chips allowed attachment, growth and differentiation of subsequent layers of linearly arranged myoblasts, parallel to the primary monolayer of myotubes. The consequent deposition of additional myoblasts on the previous layer of myotubes resulted in three‐dimensional multi‐layered structures of myotubes, typical of differentiated skeletal muscle tissue. The findings demonstrate that the on‐chip device holds promise for providing an efficient means for guided muscle tissue construction. Biotechnol. Bioeng. 2009;102: 624–631.


Arthritis & Rheumatism | 2001

Cyclic Tensile Strain Suppresses Catabolic Effects of Interleukin-1β in Fibrochondrocytes From the Temporomandibular Joint

Sudha Agarwal; Ping Long; Robert Gassner; Nicholas P. Piesco; Michael J. Buckley

OBJECTIVE To discern the effects of continuous passive motion on inflamed temporomandibular joints (TMJ). METHODS The effects of continuous passive motion on TMJ were simulated by exposing primary cultures of rabbit TMJ fibrochondrocyte monolayers to cyclic tensile strain (CTS) in the presence of recombinant human interleukin-1beta (rHuIL-1beta) in vitro. The messenger RNA (mRNA) induction of rHuIL-1beta response elements was examined by semiquantitative reverse transcriptase-polymerase chain reaction. The synthesis of nitric oxide was examined by Griess reaction, and the synthesis of prostaglandin E2 (PGE2) was examined by radioimmunoassay. The synthesis of proteins was examined by Western blot analysis of the cell extracts, and synthesis of proteoglycans via incorporation of 35S-sodium sulfate in the culture medium. RESULTS Exposure of TMJ fibrochondrocytes to rHuIL-1beta resulted in the induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), which were paralleled by NO and PGE2 production. Additionally, IL-1beta induced significant levels of collagenase (matrix metalloproteinase 1 [MMP-1]) within 4 hours, and this was sustained over a period of 48 hours. Concomitant application of CTS abrogated the catabolic effects of IL-1beta on TMJ chondrocytes by inhibiting iNOS, COX-2, and MMP-1 mRNA production and NO, PGE2, and MMP-1 synthesis. CTS also counteracted cartilage degradation by augmenting expression of mRNA for tissue inhibitor of metalloproteinases 2 that is inhibited by rHuIL-1beta. In parallel, CTS also counteracted rHuIL-1beta-induced suppression of proteoglycan synthesis. Nevertheless, the presence of an inflammatory signal was a prerequisite for the observed CTS actions, because fibrochondrocytes, when exposed to CTS alone, did not exhibit any of the effects described above. CONCLUSION CTS acts as an effective antagonist of rHuIL-1beta by potentially diminishing its catabolic actions on TMJ fibrochondrocytes. Furthermore, CTS actions appear to involve disruption/regulation of signal transduction cascade of rHuIL-1beta upstream of mRNA transcription.


PLOS ONE | 2009

Biomechanical Thresholds Regulate Inflammation through the NF-κB Pathway: Experiments and Modeling

Jin Nam; Baltazar D. Aguda; Bjoern Rath; Sudha Agarwal

Background During normal physical activities cartilage experiences dynamic compressive forces that are essential to maintain cartilage integrity. However, at non-physiologic levels these signals can induce inflammation and initiate cartilage destruction. Here, by examining the pro-inflammatory signaling networks, we developed a mathematical model to show the magnitude-dependent regulation of chondrocytic responses by compressive forces. Methodology/Principal Findings Chondrocytic cells grown in 3-D scaffolds were subjected to various magnitudes of dynamic compressive strain (DCS), and the regulation of pro-inflammatory gene expression via activation of nuclear factor-kappa B (NF-κB) signaling cascade examined. Experimental evidences provide the existence of a threshold in the magnitude of DCS that regulates the mRNA expression of nitric oxide synthase (NOS2), an inducible pro-inflammatory enzyme. Interestingly, below this threshold, DCS inhibits the interleukin-1β (IL-1β)-induced pro-inflammatory gene expression, with the degree of suppression depending on the magnitude of DCS. This suppression of NOS2 by DCS correlates with the attenuation of the NF-κB signaling pathway as measured by IL-1β-induced phosphorylation of the inhibitor of kappa B (IκB)-α, degradation of IκB-α and IκB-β, and subsequent nuclear translocation of NF-κB p65. A mathematical model developed to understand the complex dynamics of the system predicts two thresholds in the magnitudes of DCS, one for the inhibition of IL-1β-induced expression of NOS2 by DCS at low magnitudes, and second for the DCS-induced expression of NOS2 at higher magnitudes. Conclusions/Significance Experimental and computational results indicate that biomechanical signals suppress and induce inflammation at critical thresholds through activation/suppression of the NF-κB signaling pathway. These thresholds arise due to the bistable behavior of the networks originating from the positive feedback loop between NF-κB and its target genes. These findings lay initial groundwork for the identification of the thresholds in physical activities that can differentiate its favorable actions from its unfavorable consequences on joints.

Collaboration


Dive into the Sudha Agarwal's collaboration.

Top Co-Authors

Avatar

Jin Nam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Perera

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Rath

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge