Sudha K. Iyengar
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sudha K. Iyengar.
Nature Genetics | 2008
W.H. Linda Kao; Michael J. Klag; Lucy A. Meoni; David Reich; Yvette Berthier-Schaad; Man Li; Josef Coresh; Nick Patterson; Arti Tandon; Neil R. Powe; Nancy E. Fink; John H. Sadler; Matthew R. Weir; Hanna E. Abboud; Sharon G. Adler; Jasmin Divers; Sudha K. Iyengar; Barry I. Freedman; Paul L. Kimmel; William C. Knowler; Orly F. Kohn; Kristopher Kramp; David J. Leehey; Susanne B. Nicholas; Madeleine V. Pahl; Jeffrey R. Schelling; John R. Sedor; Denyse Thornley-Brown; Cheryl A. Winkler; Michael W. Smith
As end-stage renal disease (ESRD) has a four times higher incidence in African Americans compared to European Americans, we hypothesized that susceptibility alleles for ESRD have a higher frequency in the West African than the European gene pool. We carried out a genome-wide admixture scan in 1,372 ESRD cases and 806 controls and found a highly significant association between excess African ancestry and nondiabetic ESRD (lod score = 5.70) but not diabetic ESRD (lod = 0.47) on chromosome 22q12. Each copy of the European ancestral allele conferred a relative risk of 0.50 (95% CI = 0.39–0.63) compared to African ancestry. Multiple common SNPs (allele frequencies ranging from 0.2 to 0.6) in the gene encoding nonmuscle myosin heavy chain type II isoform A (MYH9) were associated with two to four times greater risk of nondiabetic ESRD and accounted for a large proportion of the excess risk of ESRD observed in African compared to European Americans.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Wei Chen; Dwight Stambolian; Albert O. Edwards; Kari Branham; Mohammad Othman; Johanna Jakobsdottir; Nirubol Tosakulwong; Margaret A. Pericak-Vance; Peter A. Campochiaro; Michael L. Klein; Perciliz L. Tan; Yvette P. Conley; Atsuhiro Kanda; Laura J. Kopplin; Yanming Li; Katherine J. Augustaitis; Athanasios J. Karoukis; William K. Scott; Anita Agarwal; Jaclyn L. Kovach; Stephen G. Schwartz; Eric A. Postel; Matthew Brooks; Keith H. Baratz; William L. Brown; Alexander J. Brucker; Anton Orlin; Gary C. Brown; Allen C. Ho; Carl D. Regillo
We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.
Kidney International | 2013
Michael S. Lipkowitz; Barry I. Freedman; Carl D. Langefeld; Mary E. Comeau; Donald W. Bowden; W.H. Linda Kao; Brad C. Astor; Erwin P. Bottinger; Sudha K. Iyengar; Paul E. Klotman; Richard G. Freedman; Weijia Zhang; Rulan S. Parekh; Michael J. Choi; George W. Nelson; Cheryl A. Winkler; Jeffrey B. Kopp
Despite intensive anti-hypertensive therapy there was a high incidence of renal end-points in participants of the African American Study of Kidney Disease and Hypertension (AASK) cohort. To better understand this, coding variants in the apolipoprotein L1 (APOL1) and the non-muscle myosin heavy chain 9 (MYH9) genes were evaluated for an association with hypertension-attributed nephropathy and clinical outcomes in a case-control study. Clinical data and DNA were available for 675 AASK participant cases and 618 African American non-nephropathy control individuals. APOL1 G1 and G2, and MYH9 E1 variants along with 44 ancestry informative markers were genotyped with allele frequency differences between cases and controls analyzed by logistic regression multivariable models adjusting for ancestry, age, and gender. In recessive models, APOL1 risk variants were significantly associated with kidney disease in all cases compared to controls with an odds ratio of 2.57. In AASK cases with more advanced disease, such as a baseline urine protein to creatinine ratio over 0.6 g/g or a serum creatinine over 3 mg/dL during follow-up, the association was strengthened with odds ratios of 6.29 and 4.61, respectively. APOL1 risk variants were consistently associated with renal disease progression across medication classes and blood pressure targets. Thus, kidney disease in AASK participants was strongly associated with APOL1 renal risk variants.
Diabetes | 2007
Sudha K. Iyengar; Hanna E. Abboud; Katrina A.B. Goddard; Mohammed F. Saad; Sharon G. Adler; Nedal H. Arar; Donald W. Bowden; Ravi Duggirala; Robert C. Elston; Robert L. Hanson; Eli Ipp; W.H. Linda Kao; Paul L. Kimmel; Michael J. Klag; William C. Knowler; Lucy A. Meoni; Robert G. Nelson; Susanne B. Nicholas; Madeleine V. Pahl; Rulan S. Parekh; Shannon R E Quade; Stephen S. Rich; Jerome I. Rotter; Marina Scavini; Jeffrey R. Schelling; John R. Sedor; Ashwini R. Sehgal; Vallabh O. Shah; Michael W. Smith; Kent D. Taylor
The Family Investigation of Nephropathy and Diabetes (FIND) was initiated to map genes underlying susceptibility to diabetic nephropathy. A total of 11 centers participated under a single collection protocol to recruit large numbers of diabetic sibling pairs concordant and discordant for diabetic nephropathy. We report the findings from the first-phase genetic analyses in 1,227 participants from 378 pedigrees of European-American, African-American, Mexican-American, and American Indian descent recruited from eight centers. Model-free linkage analyses, using a dichotomous definition for diabetic nephropathy in 397 sibling pairs, as well as the quantitative trait urinary albumin-to-creatinine ratio (ACR), were performed using the Haseman-Elston linkage test on 404 microsatellite markers. The strongest evidence of linkage to the diabetic nephropathy trait was on chromosomes 7q21.3, 10p15.3, 14q23.1, and 18q22.3. In ACR (883 diabetic sibling pairs), the strongest linkage signals were on chromosomes 2q14.1, 7q21.1, and 15q26.3. These results confirm regions of linkage to diabetic nephropathy on chromosomes 7q, 10p, and 18q from prior reports, making it important that genes underlying these peaks be evaluated for their contribution to nephropathy susceptibility. Large family collections consisting of multiple members with diabetes and advanced nephropathy are likely to accelerate the identification of genes causing diabetic nephropathy, a life-threatening complication of diabetes.
American Journal of Human Genetics | 2004
Sudha K. Iyengar; Danhong Song; Barbara E. K. Klein; Ronald Klein; James H. Schick; Jennifer Humphrey; Christopher Millard; Rachel Liptak; Karlie Russo; Gyungah Jun; Kristine E. Lee; Bonnie A. Fijal; Robert C. Elston
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.
American Journal of Human Genetics | 2004
Catherine M. Stein; James H. Schick; H. Gerry Taylor; Lawrence D. Shriberg; Christopher Millard; Amy Kundtz-Kluge; Karlie Russo; Nori Minich; Amy J. Hansen; Lisa A. Freebairn; Robert C. Elston; Barbara A. Lewis; Sudha K. Iyengar
Speech-sound disorder (SSD) is a complex behavioral disorder characterized by speech-sound production errors associated with deficits in articulation, phonological processes, and cognitive linguistic processes. SSD is prevalent in childhood and is comorbid with disorders of language, spelling, and reading disability, or dyslexia. Previous research suggests that developmental problems in domains associated with speech and language acquisition place a child at risk for dyslexia. Recent genetic studies have identified several candidate regions for dyslexia, including one on chromosome 3 segregating in a large Finnish pedigree. To explore common genetic influences on SSD and reading, we examined linkage for several quantitative traits to markers in the pericentrometric region of chromosome 3 in 77 families ascertained through a child with SSD. The quantitative scores measured several processes underlying speech-sound production, including phonological memory, phonological representation, articulation, receptive and expressive vocabulary, and reading decoding and comprehension skills. Model-free linkage analysis was followed by identification of sib pairs with linkage and construction of core shared haplotypes. In our multipoint analyses, measures of phonological memory demonstrated the strongest linkage (marker D3S2465, P=5.6 x 10(-5), and marker D3S3716, P=6.8 x 10(-4)). Tests for single-word decoding also demonstrated linkage (real word reading: marker D3S2465, P=.004; nonsense word reading: marker D3S1595, P=.005). The minimum shared haplotype in sib pairs with similar trait values spans 4.9 cM and is bounded by markers D3S3049 and D3S3045. Our results suggest that domains common to SSD and dyslexia are pleiotropically influenced by a putative quantitative trait locus on chromosome 3.
American Journal of Human Genetics | 2003
James H. Schick; Sudha K. Iyengar; Barbara E. K. Klein; Ronald Klein; Karlie Reading; Rachel Liptak; Christopher Millard; Kristine E. Lee; Sandra C. Tomany; Emily L. Moore; Bonnie A. Fijal; Robert C. Elston
Age-related maculopathy (ARM) is a leading cause of visual impairment among the elderly in Western populations. To identify ARM-susceptibility loci, we genotyped a subset of subjects from the Beaver Dam (WI) Eye Study and performed a model-free genomewide linkage analysis for markers linked to a quantitative measure of ARM. We initially genotyped 345 autosomal markers in 325 individuals ( N =263 sib pairs) from 102 pedigrees. Ten regions suggestive of linkage with ARM were observed on chromosomes 3, 5, 6, 12, 15, and 16. Prior to fine mapping, the most significant regions were an 18-cM region on chromosome 12, near D12S1300 ( P =.0159); a region on chromosome 3, near D3S1763, with a P value of .0062; and a 6-cM region on chromosome 16, near D16S769, with a P value of .0086. After expanding our analysis to include 25 additional fine-mapping markers, we found that a 14-cM region on chromosome 12, near D12S346 (located at 106.89 cM), showed the strongest indication of linkage, with a P value of .004. Three other regions, on chromosomes 5, 6, and 15, that were nominally significant at P ≤.01 are also appropriate for fine mapping.
Cornea | 2006
Timothy T. McMahon; Loretta Szczotka-Flynn; Joseph T. Barr; Robert J. Anderson; Mary E. Slaughter; Jonathan H. Lass; Sudha K. Iyengar
Purpose: To define a new method for grading severity of keratoconus, the Keratoconus Severity Score (KSS). Methods: A rationale for grading keratoconus severity was developed using common clinical markers plus 2 corneal topographic indices, creating a 0 to 5 severity score. An initial test set of 1012 eyes, including normal eyes, eyes with abnormal corneal and topographic findings but not keratoconus, and eyes with keratoconus having a wide range of severity, was used to determine cutpoints for the KSS. Validation set 1, comprising data from 128 eyes, was assigned a KSS and compared with a clinicians ranking of severity termed the “gold standard” to determine if the scale fairly represented how a clinician would grade disease severity. κ statistics, sensitivity, and specificity were calculated. A program was developed to automate the determination of the score. This was tested against a manual assignment of KSS in 2121 (validation set 2) eyes from the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study, as well as normal eyes and abnormal eyes without keratoconus. Ten percent of eyes underwent repeat manual assignment of KSS to determine the variability of manual assignment of a score. Results: From initial assessments, the KSS used 2 corneal topography indices: average corneal power and root mean square (RMS) error for higher-order Zernike terms derived from the first corneal surface wavefront. Clinical signs including Vogt striae, Fleischer rings, and corneal scarring were also included. Last, a manual interpretation of the map pattern was included. Validation set 1 yielded a κ statistic of 0.904, with sensitivities ranging from 0.64 to 1.00 and specificities ranging from 0.93 to 0.98. The sensitivity and specificity for determining nonkeratoconus from keratoconus were both 1.00. Validation set 2 showed κ statistics of 0.94 and 0.95 for right and left eyes, respectively. Test-retest analysis yielded κ statistics of 0.84 and 0.83 for right and left eyes, respectively. Conclusion: A simple and reliable grading system for keratoconus was developed that can be largely automated. Such a grading scheme could be useful in genetic studies for a complex trait such as keratoconus requiring a quantitative measure of disease presence and severity.
PLOS Genetics | 2010
M. Kamran Ikram; Sim Xueling; Richard Jensen; Mary Frances Cotch; Alex W. Hewitt; M. Arfan Ikram; Jie Jin Wang; Ronald Klein; Barbara E. K. Klein; Monique M.B. Breteler; Ning Cheung; Gerald Liew; Paul Mitchell; André G. Uitterlinden; Fernando Rivadeneira; Albert Hofman; Paulus T. V. M. de Jong; Cornelia M. van Duijn; Linda Kao; Ching-Yu Cheng; Albert V. Smith; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Fridbert Jonasson; Gudny Eiriksdottir; Thor Aspelund; Tamara B. Harris; Lenore J. Launer
There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10−8) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%–3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10−25, within the RASIP1 locus), rs225717 (6q24; p = 1.25×10−16, adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10−13, in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32×10−16, adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.
Nature Genetics | 2012
Eranga N. Vithana; Chiea Chuen Khor; Chunyan Qiao; Monisha E. Nongpiur; Ronnie George; Li Jia Chen; Tan Do; Khaled K. Abu-Amero; Chor Kai Huang; Sancy Low; Liza-Sharmini Ahmad Tajudin; Shamira A. Perera; Ching-Yu Cheng; Liang Xu; Hongyan Jia; Ching-Lin Ho; Kar Seng Sim; Renyi Wu; Clement C.Y. Tham; Paul Chew; Daniel H. Su; Francis T.S. Oen; Sripriya Sarangapani; Nagaswamy Soumittra; Essam A. Osman; Hon-Tym Wong; Guangxian Tang; Sujie Fan; Hailin Meng; Dao T L Huong
Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study including 1,854 PACG cases and 9,608 controls across 5 sample collections in Asia. Replication experiments were conducted in 1,917 PACG cases and 8,943 controls collected from a further 6 sample collections. We report significant associations at three new loci: rs11024102 in PLEKHA7 (per-allele odds ratio (OR) = 1.22; P = 5.33 × 10−12), rs3753841 in COL11A1 (per-allele OR = 1.20; P = 9.22 × 10−10) and rs1015213 located between PCMTD1 and ST18 on chromosome 8q (per-allele OR = 1.50; P = 3.29 × 10−9). Our findings, accumulated across these independent worldwide collections, suggest possible mechanisms explaining the pathogenesis of PACG.