Sudip Kumar Das
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sudip Kumar Das.
Journal of Colloid and Interface Science | 2009
Tarun Kumar Naiya; Ashim Kumar Bhattacharya; Sudip Kumar Das
The ability of activated alumina as synthetic adsorbent was investigated for adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied. The optimum solution pH for adsorption of Cd(II) and Pb(II) from aqueous solutions was found to be 5. Kinetics data were best described by pseudo-second order model. The effective particle diffusion coefficient of Cd(II) and Pb(II) are of the order of 10(-10) m(2)/s. Values of mass transfer coefficient were estimated as 4.868x10(-6) cm/s and 6.85x10(-6) cm/s for Cd(II) and Pb(II) adsorption respectively. The equilibrium adsorption data for Cd(II) and Pb(II) were better fitted to Langmuir adsorption isotherm model. The thermodynamic studies indicated that the adsorption was spontaneous and exothermic for Cd(II) adsorption and endothermic for Pb(II). The sorption energy calculated from Dubinin-Radushkevich isotherm were 11.85 kJ/mol and 11.8 kJ/mol for the adsorption of Cd(II) and Pb(II) respectively which indicated that both the adsorption processes were chemical in nature. Desorption studies were carried out using dilute mineral acids. Application studies carried out using industrial waste water samples containing Cd(II) and Pb(II) showed the suitability of activated alumina in waste water treatment plant operation.
Journal of Hazardous Materials | 2009
Tarun Kumar Naiya; Ashim Kumar Bhattacharya; Sailendranath Mandal; Sudip Kumar Das
Present study deals with the adsorption of Pb(II) from aqueous solution on rice husk ash. Rice husk is a by-product generally obtained from rice mill. Rice husk ash is a solid obtained after burning of rice husk. Batch studies were performed to evaluate the influences of various experimental parameters like pH, initial concentration, adsorbent dosage, contact time and the effect of temperature. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 5 g/L of solution and equilibrium time 1h. Adsorption of Pb(II) followed pseudo-second-order kinetics. The effective diffusion coefficient is of the order of 10(-10)m(2)/s. The equilibrium adsorption isotherm was better described by Freuindlich adsorption isotherm model. The adsorption capacity (q(max)) of rice husk ash for Pb(II) ions in terms of monolayer adsorption was 91.74 mg/g. The change of entropy (DeltaS(0)) and enthalpy (Delta H(0)) were estimated at 0.132 kJ/(mol K) and 28.923 kJ/mol respectively. The negative value of Gibbs free energy (Delta G(0)) indicates feasible and spontaneous adsorption of Pb(II) on rice husk ash. The value of the adsorption energy (E), calculated using Dubinin-Radushkevich isotherm, was 9.901 kJ/mol and it indicated that the adsorption process was chemical in nature. Application study was also carried out to find the suitability of the process in waste water treatment operation.
Colloids and Surfaces B: Biointerfaces | 2011
Biswajit Singha; Sudip Kumar Das
Cr(VI) is a major water pollutant from industrial effluent whose concentration is to be reduced within the permissible limit. Present study reports a systematic evaluation of six different natural adsorbents for the removal of Cr(VI) from aqueous solutions in batch process. The adsorption kinetic data were best described by pseudo-second order model. The values of mass transfer coefficient for Cr(VI) adsorption indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast. The effective diffusivity of Cr(VI) removal for all the adsorbents were of the order of 10(-10) m(2)/s which suggested chemisorption of the process. The adsorption process was jointly controlled by film diffusion and intraparticle diffusion. Maximum monolayer adsorption capacities onto the natural adsorbents used were comparable to the other natural adsorbents used by other researchers. The thermodynamic studies and sorption energy calculation using Dubinin-Radushkevich isotherm model indicated that the adsorption processes were endothermic and chemical in nature. FT-IR studies were carried out to understand the type of functional groups responsible for Cr(VI) binding process. Desorption study was carried out with different concentration of NaOH solutions. Application study was carried out using electroplating industrial wastewater.
Colloids and Surfaces B: Biointerfaces | 2013
Biswajit Singha; Sudip Kumar Das
The potentiality of low cost natural/agricultural waste biomasses for the removal of Cu(II) ion from aqueous solution has been investigated in batch experiments. The effect of various physico-chemical parameters such as initial pH, initial Cu(II) concentration, adsorbent dosage, contact time and temperature has been studied. The optimum pH for adsorption was found to be 6 for all adsorbents used. Kinetics data were best described by the pseudo-2nd-order model. The experimental data were fitted well with Freundlich and Halsey isotherm models. The diffusion coefficient and sorption energy indicated that the adsorption process was chemical in nature. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated, and it was observed that the adsorption process was spontaneous and endothermic. The mean sorption energy was calculated using Dubinin-Radushkevich isotherm model and it confirmed that the sorption process was chemical in nature. Different active functional groups were identified by FTIR studies which were responsible for Cu(II) ion adsorption process. Application study using electroplating industrial waste water and regeneration experiment of the adsorbent were also investigated. Design procedure for the batch process was also reported.
Journal of Colloid and Interface Science | 2008
Tarun Kumar Naiya; Ashim Kumar Bhattacharya; Sudip Kumar Das
Clarified sludge is a major waste generating during steel making process. In India and in most industrial countries, the use of clarified sludge as a road ballast and land filter has had a very long history. In present study, clarified sludge has been characterized and used for the removal of Cd(II) from aqueous solutions. The effect of pH, adsorbent dosage, adsorbate concentration, contact time and temperature on adsorption process was studied in batch experiments. Kinetics data were best described by pseudo-second order model. The effective diffusion co-efficient of Cd(II) is of the order of 10(-11) m(2)/s. The maximum uptake was 36.23 mg/g. The adsorption data can be well described by Langmuir isotherm. The result of the equilibrium studies showed that the solution pH was the governing factor affecting the adsorption. Mass transfer analysis was also carried out for the adsorption process. The thermodynamic studies indicated that the adsorption was spontaneous and exothermic in nature. The sorption energy calculated from Dubinin-Radushkevich isotherm indicated that the adsorption process is chemical in nature. Desorption as well as the application studies were carried out considering the economic viewpoint of wastewater treatment plant operations.
Journal of Hazardous Materials | 2009
Tarun Kumar Naiya; Ashim Kumar Bhattacharya; Sudip Kumar Das
The basic oxygen furnace waste generated in steel plant has been used as a low cost adsorbent for the removal of Pb(II) from aqueous solution. The effect of pH, adsorbent dosage, initial metal ion concentration, contact time and temperature on adsorption process was studied in batch experiments. Results of the equilibrium experiments showed that the solution pH was the key factor affecting the adsorption characteristics. Optimum pH for the adsorption was found to be 5 with corresponding adsorbent dosage level of 5 g/L. The equilibrium was achieved within 1h of contact time. Kinetics data were best described by pseudo second order model. The effective particle diffusion coefficient of Pb(II) is the order of 10(-10)m(2)/s. The maximum uptake was 92.5mg/g. The adsorption data can be well fitted by Freundlich isotherm. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. External mass transfer analysis was also carried out for the adsorption process. The thermodynamic studies indicated that the adsorption is spontaneous and endothermic. The sorption energy (10.1745 kJ/mol) calculated from Dubinin-Radushkevich isotherm indicated that the adsorption process is chemical in nature. Desorption studies were carried out using dilute mineral acids to elucidate the mechanism of adsorption. Application studies were carried out considering the economic viewpoint of wastewater treatment plant operations.
Environmental Science and Pollution Research | 2012
Biswajit Singha; Sudip Kumar Das
PurposeThe purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry.MethodsSix different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent.ResultsThe biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin–Radushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents.ConclusionThe biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.
Journal of Hazardous Materials | 2014
Tania Mitra; Biswajit Singha; Nirjhar Bar; Sudip Kumar Das
Hyacinth root was used as a biosorbent for generating adsorption data in fixed-bed glass column. The influence of different operating parameters like inlet Pb(II) ion concentration, liquid flow rate and bed height on the breakthrough curves and the performance of the column was studied. The result showed that the adsorption efficiency increased with increase in bed height and decreased with increase in inlet Pb(II) ion concentration and flow rate. Increasing the flow rate resulted in shorter time for bed saturation. The result showed that as the bed height increased the availability of more number of adsorption sites in the bed increased, hence the throughput volume of the aqueous solution also increased. The adsorption kinetics was analyzed using different models. It was observed that maximum adsorption capacity increased with increase in flow rate and initial Pb(II) ion concentration but decreased with increase in bed height. Applicability of artificial neural network (ANN) modeling for the prediction of Pb(II) ion removal was also reported by using multilayer perceptron with backpropagation, Levenberg-Marquardt and scaled conjugate algorithms and four different transfer functions in a hidden layer and a linear output transfer function.
Desalination and Water Treatment | 2015
Soma Nag; Abhijit Mondal; Umesh Mishra; Nirjhar Bar; Sudip Kumar Das
AbstractChromium metal is found in industrial wastewater at a much higher concentration than the prescribed limit set by different regulatory authorities. Since chromium(VI) is very toxic and carcinogenic, it requires removal at source, that is, before its discharge to the water bodies. The present study is carried out for removal of Cr(VI) from aqueous solution by using locally available rubber leaf as a low-cost adsorbent in batch and continuous column mode. The effects of pH, adsorbent dose, contact time, initial metal ion concentration, and temperature on removal of Cr(VI) were studied in batch process. Different kinetic and isotherm models were examined and the model parameters were determined. The column studies were conducted to investigate the effects of flow rate, bed height, and initial metal ion concentration on removal efficiencies. The experimental data reflects reasonably with Thomas and Yoon–Nelson models in continuous mode.
Environmental Science and Pollution Research | 2017
Munmun Banerjee; Nirjhar Bar; Ranjan Kumar Basu; Sudip Kumar Das
Cr(VI) is a toxic water pollutant, which causes cancer and mutation in living organisms. Adsorption has become the most preferred method for removal of Cr(VI) due to its high efficiency and low cost. Peanut and almond shells were used as adsorbents in downflow fixed bed continuous column operation for Cr(VI) removal. The experiments were carried out to scrutinise the adsorptive capacity of the peanut shells and almond shells, as well as to find out the effect of various operating parameters such as column bed depth (5–10 cm), influent flow rate (10–22 ml min−1) and influent Cr(VI) concentration (10–20 mg L−1) on the Cr(VI) removal. The fixed bed column operation for Cr(VI) adsorption the equilibrium was illustrated by Langmuir isotherm. Different well-known mathematical models were applied to the experimental data to identify the best-fitted model to explain the bed dynamics. Prediction of the bed dynamics by Yan et al. model was found to be satisfactory. Applicability of artificial neural network (ANN) modelling is also reported. An ANN modelling of multilayer perceptron with gradient descent and Levenberg-Marquardt algorithms have also been tried to predict the percentage removal of Cr(VI). This study indicates that these adsorbents have an excellent potential and are useful for water treatment particularly small- and medium-sized industries of third world countries. Almond shell represents better adsorptive capacity as breakthrough time and exhaustion time are longer in comparison to peanut shell.
Collaboration
Dive into the Sudip Kumar Das's collaboration.
Government College of Engineering and Leather Technology
View shared research outputs