Sue A. Roberts
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sue A. Roberts.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Sue A. Roberts; Andrzej Weichsel; Gregor Grass; Keshari M. Thakali; James T. Hazzard; Gordon Tollin; William R. Montfort
CueO (YacK), a multicopper oxidase, is part of the copper-regulatory cue operon in Escherichia coli. The crystal structure of CueO has been determined to 1.4-Å resolution by using multiple anomalous dispersion phasing and an automated building procedure that yielded a nearly complete model without manual intervention. This is the highest resolution multicopper oxidase structure yet determined and provides a particularly clear view of the four coppers at the catalytic center. The overall structure is similar to those of laccase and ascorbate oxidase, but contains an extra 42-residue insert in domain 3 that includes 14 methionines, nine of which lie in a helix that covers the entrance to the type I (T1, blue) copper site. The trinuclear copper cluster has a conformation not previously seen: the Cu-O-Cu binuclear species is nearly linear (Cu-O-Cu bond angle = 170°) and the third (type II) copper lies only 3.1 Å from the bridging oxygen. CueO activity was maximal at pH 6.5 and in the presence of >100 μM Cu(II). Measurements of intermolecular and intramolecular electron transfer with laser flash photolysis in the absence of Cu(II) show that, in addition to the normal reduction of the T1 copper, which occurs with a slow rate (k = 4 × 107 M−1⋅s−1), a second electron transfer process occurs to an unknown site, possibly the trinuclear cluster, with k = 9 × 107 M−1⋅s−1, followed by a slow intramolecular electron transfer to T1 copper (k ∼10 s−1). These results suggest the methionine-rich helix blocks access to the T1 site in the absence of excess copper.
Nature Structural & Molecular Biology | 2000
Andrzej Weichsel; John F. Andersen; Sue A. Roberts; William R. Montfort
The nitrophorins comprise an unusual family of proteins that use ferric (Fe(III)) heme to transport highly reactive nitric oxide (NO) from the salivary gland of a blood sucking bug to the victim, resulting in vasodilation and reduced blood coagulation. We have determined structures of nitrophorin 4 in complexes with H2O, cyanide and nitric oxide. These structures reveal a remarkable feature: the nitrophorins have a broadly open distal pocket in the absence of NO, but upon NO binding, three or more water molecules are expelled and two loops fold into the distal pocket, resulting in the packing of hydrophobic groups around the NO molecule and increased distortion of the heme. In this way, the protein apparently forms a ‘hydrophobic trap’ for the NO molecule. The structures are very accurate, ranging between 1.6 and 1.4 Å resolutions.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Christian G. Roessler; Branwen M. Hall; William J. Anderson; Wendy M. Ingram; Sue A. Roberts; William R. Montfort; Matthew H. J. Cordes
Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a “stepping-stone” method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and λ. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and λ. The domains show 40% sequence identity but differ by switching of α-helix to β-sheet in a C-terminal region spanning ≈25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.
Journal of Biological Chemistry | 2011
Satish Singh; Sue A. Roberts; Sylvia Franke McDevitt; Andrzej Weichsel; Guenter Wildner; Gregor Grass; William R. Montfort
Background: The multicopper oxidase CueO allows Escherichia coli to survive in aqueous solutions with a high copper concentration. Results: Cu(I) and Ag(I) ions coordinate to a flexible, methionine-rich sequence. Conclusion: The methionine-rich insert and a substrate-binding site ensure that only Cu(I) is oxidized. Significance: Understanding how bacteria survive in the presence of normally toxic concentrations of metal ions may lead to better antibacterial agents. The multicopper oxidase CueO oxidizes toxic Cu(I) and is required for copper homeostasis in Escherichia coli. Like many proteins involved in copper homeostasis, CueO has a methionine-rich segment that is thought to be critical for copper handling. How such segments function is poorly understood. Here, we report the crystal structure of CueO at 1.1 Å with the 45-residue methionine-rich segment fully resolved, revealing an N-terminal helical segment with methionine residues juxtaposed for Cu(I) ligation and a C-terminal highly mobile segment rich in methionine and histidine residues. We also report structures of CueO with a C500S mutation, which leads to loss of the T1 copper, and CueO with six methionines changed to serine. Soaking C500S CueO crystals with Cu(I), or wild-type CueO crystals with Ag(I), leads to occupancy of three sites, the previously identified substrate-binding site and two new sites along the methionine-rich helix, involving methionines 358, 362, 368, and 376. Mutation of these residues leads to a ∼4-fold reduction in kcat for Cu(I) oxidation. Ag(I), which often appears with copper in nature, strongly inhibits CueO oxidase activities in vitro and compromises copper tolerance in vivo, particularly in the absence of the complementary copper efflux cus system. Together, these studies demonstrate a role for the methionine-rich insert of CueO in the binding and oxidation of Cu(I) and highlight the interplay among cue and cus systems in copper and silver homeostasis.
Biochemistry | 2013
Bradley G. Fritz; Sue A. Roberts; Aqeel Ahmed; Linda Breci; Wenzhou Li; Andrzej Weichsel; Jacqueline L. Brailey; Vicki H. Wysocki; Florence Tama; William R. Montfort
Soluble guanylyl/guanylate cyclase (sGC) converts GTP to cGMP after binding nitric oxide, leading to smooth muscle relaxation and vasodilation. Impaired sGC activity is common in cardiovascular disease, and sGC stimulatory compounds are vigorously sought. sGC is a 150 kDa heterodimeric protein with two H-NOX domains (one with heme, one without), two PAS domains, a coiled-coil domain, and two cyclase domains. Binding of NO to the sGC heme leads to proximal histidine release and stimulation of catalytic activity. To begin to understand how binding leads to activation, we examined truncated sGC proteins from Manduca sexta (tobacco hornworm) that bind NO, CO, and stimulatory compound YC-1 but lack the cyclase domains. We determined the overall shape of truncated M. sexta sGC using analytical ultracentrifugation and small-angle X-ray scattering (SAXS), revealing an elongated molecule with dimensions of 115 Å × 90 Å × 75 Å. Binding of NO, CO, or YC-1 had little effect on shape. Using chemical cross-linking and tandem mass spectrometry, we identified 20 intermolecular contacts, allowing us to fit homology models of the individual domains into the SAXS-derived molecular envelope. The resulting model displays a central parallel coiled-coil platform upon which the H-NOX and PAS domains are assembled. The β1 H-NOX and α1 PAS domains are in contact and form the core signaling complex, while the α1 H-NOX domain can be removed without a significant effect on ligand binding or overall shape. Removal of 21 residues from the C-terminus yields a protein with dramatically increased proximal histidine release rates upon NO binding.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Yuquan Xu; Tong Zhou; Zhengfu Zhou; Shiyou Su; Sue A. Roberts; William R. Montfort; Jia Zeng; Ming Chen; Wei Zhang; Min Lin; Jixun Zhan; István Molnár
Resorcylic acid lactones and dihydroxyphenylacetic acid lactones represent important pharmacophores with heat shock response and immune system modulatory activities. The biosynthesis of these fungal polyketides involves a pair of collaborating iterative polyketide synthases (iPKSs): a highly reducing iPKS with product that is further elaborated by a nonreducing iPKS (nrPKS) to yield a 1,3-benzenediol moiety bridged by a macrolactone. Biosynthesis of unreduced polyketides requires the sequestration and programmed cyclization of highly reactive poly-β-ketoacyl intermediates to channel these uncommitted, pluripotent substrates to defined subsets of the polyketide structural space. Catalyzed by product template (PT) domains of the fungal nrPKSs and discrete aromatase/cyclase enzymes in bacteria, regiospecific first-ring aldol cyclizations result in characteristically different polyketide folding modes. However, a few fungal polyketides, including the dihydroxyphenylacetic acid lactone dehydrocurvularin, derive from a folding event that is analogous to the bacterial folding mode. The structural basis of such a drastic difference in the way a PT domain acts has not been investigated until now. We report here that the fungal vs. bacterial folding mode difference is portable on creating hybrid enzymes, and we structurally characterize the resulting unnatural products. Using structure-guided active site engineering, we unravel structural contributions to regiospecific aldol condensations and show that reshaping the cyclization chamber of a PT domain by only three selected point mutations is sufficient to reprogram the dehydrocurvularin nrPKS to produce polyketides with a fungal fold. Such rational control of first-ring cyclizations will facilitate efforts to the engineered biosynthesis of novel chemical diversity from natural unreduced polyketides.
Journal of Biological Chemistry | 2008
Xiaohui Hu; Lauren B. Murata; Andrzej Weichsel; Jacqueline L. Brailey; Sue A. Roberts; Alan Nighorn; William R. Montfort
Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the ∼100-kDa N-terminal heterodimeric fragment and increases the CO affinity by ∼50-fold to 1.7 μm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k6-5 = 12.8 s-1). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to ∼30 μm. NO release is biphasic in the absence of YC-1 (koff1 = 0.10 s-1 and koff2 = 0.0015 s-1); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the α subunit with importance for heme binding.
Inorganic Chemistry | 1976
Ruth E. Caputo; Sue A. Roberts; Roger D. Willett; B. C. Gerstein
The crystal structure of ((CH/sub 3/)/sub 3/NH)/sub 3/ Mn/sub 2/Cl/sub 7/ has been determined and the magnetic susceptibility of the compound measured. The salt belongs to the polar hexagonal space group P6/sub 3//sub mc/ with a = 14.509 (19) and c = 6.415 (7) A, Z = 2. The structure consists of linear chains of face-shared MnCl/sub 6/ octahedra and discrete MnCl/sub 4//sup 2 -/ tetrahedra which are separated by the trimethylammonium ions. The susceptibility data can be explained by a model consisting of the susceptibility of a system of linear chains together with the susceptibility of the discrete MnCL/sub 4//sup 2 -/ tetrahedra. (auth)
Journal of Organic Chemistry | 2015
Zhigang Xu; Guillermo Martinez-Ariza; Alexandra P. Cappelli; Sue A. Roberts; Christopher Hulme
Several novel cascade reactions are herein reported that enable access to a variety of unique mono- and bis-heterocyclic scaffolds. The sequence of cascade events are mediated through acid treatment of an Ugi adduct that affords 1,5-benzodiazepines which subsequently undergo an elegant rearrangement to deliver (E)-benzimidazolones, which through acid-promoted tautomerization convert to their corresponding (Z)-isomers. Moreover, a variety of heterocycles tethered to (Z)-benzimidazole-2-ones are also accessible through similar domino-like processes, demonstrating a general strategy to access significantly new scaffold diversity, each containing four points of potential diversification. Final structures of five scaffolds have been definitively proven by X-ray crystallography.
Angewandte Chemie | 2015
Guillermo Martinez-Ariza; Muhammad Ayaz; Sue A. Roberts; Walter A. Rabanal-León; Ramiro Arratia-Pérez; Christopher Hulme
Two structurally unique organocesium carbanionic tetramic acids have been synthesized through expeditious and novel cascade reactions of strategically functionalized Ugi skeletons delivering products with two points of potential diversification. This is the first report of the use of multicomponent reactions and subsequent cascades to access complex, unprecedented organocesium architectures. Moreover, this article also highlights the first use of mild cesium carbonate as a cesium source for the construction of cesium organometallic scaffolds. Relativistic DFT calculations provide an insight into the electronic structure of the reported compounds.