Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sue Dong Xiang is active.

Publication


Featured researches published by Sue Dong Xiang.


Immunology and Cell Biology | 2004

Vaccines that facilitate antigen entry into dendritic cells

Anita Gamvrellis; David Leong; Jennifer Hanley; Sue Dong Xiang; Patricia L. Mottram; Magdalena Plebanski

Although vaccines have been highly successful in preventing and treating many infectious diseases (including smallpox, polio and diphtheria) diseases prevalent in the developing world such as malaria and HIV, that suppress the host immune system, require new, multiple strategies that will be defined by our growing understanding of specific immune activation. The definition of adjuvants, previously thought of as any substance that enhanced the immunogenicity of antigen, could now include soluble mediators and antigenic carriers that interact with surface molecules present on DC (e.g. LPS, Flt3L, heat shock protein) particulate antigens which are taken up by mechanisms available to APC but not other cell types (e.g. immunostimulatory complexes, latex, polystyrene particles) and viral/bacterial vectors that infect antigen presenting cells (e.g. vaccinia, lentivirus, adenovirus). These approaches, summarized herein, have shown potential in vaccinating against disease in animal models, and in some cases in humans. Of these, particle‐antigen conjugates provide rapid formulation of the vaccine, easy storage and wide application, with both carrier and adjuvant functions that activate DC. Combined vaccines of the future could use adjuvants such as virus‐like particles and particles targeted towards a predominant cellular type or immune response, with target cell activation enhanced by growth factors or maturation signals prior to, or during immunization. Collectively, these new additions to adjuvant technology provide opportunities for more specific immune regulation than previously available.


Vaccine | 2008

Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads.

Deanne L.V. Greenwood; Kemperly Dynon; Martha Kalkanidis; Sue Dong Xiang; Magdalena Plebanski; Jean-Paul Scheerlinck

Vaccination against foot-and-mouth disease virus (FMDV) is a major problem as current vaccines do not allow easy differentiation between infected and vaccinated animals. Furthermore, large scale production of inactivated virus poses significant risks. To address this we investigated the feasibility of using inert nano-beads that target antigen to dendritic cells (DCs) to induce immune responses against FMDV-specific synthetic peptides in sheep. Our results demonstrate that while single peptides induce responses in most sheep, the combination of multiple peptides either conjugated separately to individual nano-beads or conjugated as a mixture induce significant cell-mediated (CM) and humoral immune responses.


Expert Review of Vaccines | 2008

Promising particle-based vaccines in cancer therapy

Sue Dong Xiang; Karen Scalzo-Inguanti; Gabriela Minigo; Anthony Park; Charles L. Hardy; Magdalena Plebanski

Immunotherapy and preventative cancer vaccines offer the hope of controlling cancer in humans with few of the undesirable side effects associated with current chemotherapy-based methods. Particulate vaccines are effectively taken up by dendritic cells, inducing both T-cell and antibody responses. Virus-like particles (VLPs) have shown preventive efficacy against cervical cancer. Herein we review a range of leading particle-based vaccine approaches: VLPs, immunostimulating complexes, liposomes, synthetic nanoparticles and microparticles (both biocompatible and biodegradable, such as polylactide-co-glycolides and poly[D,L-lactic-co-glycolic] acid). Immune efficacy, regulatory and safety issues, as well the application of immunotherapeutics to immunosuppressed patients with high levels of Tregs are also discussed. We argue that developmental issues (cost and intellectual property lifespan) and the lack of reliable preclinical animal models, rather than the lack of innovative vaccine approaches, currently present a major obstacle to rapid and effective vaccine development.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2010

Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles

Sue Dong Xiang; Cordelia Selomulya; Jenny Ho; Vasso Apostolopoulos; Magdalena Plebanski

Vaccination offers a cost-effective approach to the control of endemic infectious and a less invasive treatment modality against cancers. Since the discovery that injecting DNA encoding antigens (expressed in vivo) results in the induction of CD8 T cells as well as antibody mediated immunity, researchers have tried to develop methods to consistently enhance this immunity to disease protective levels in humans. Adsorption, coformulation, or encapsulation with particles has been found to both stabilize DNA formulations, through preventing rapid degradation, and provide vaccine adjuvanting effects, largely due to effective uptake of particulate materials by antigen presenting cells. Recently, it has been shown that nanoparticles, as opposed to microparticles, based DNA vaccine carriers are preferentially taken up by dendritic cells resulting in the induction of maximal levels of combined humoral and cellular immunity.


Journal of Immunology | 2013

Differential Uptake of Nanoparticles and Microparticles by Pulmonary APC Subsets Induces Discrete Immunological Imprints

Charles L. Hardy; Jeanne S. LeMasurier; Rohimah Mohamud; Jun John Yao; Sue Dong Xiang; Jennifer M. Rolland; Robyn E. O'Hehir; Magdalena Plebanski

There is increasing interest in the use of engineered particles for biomedical applications, although questions exist about their proinflammatory properties and potential adverse health effects. Lung macrophages and dendritic cells (DC) are key regulators of pulmonary immunity, but little is known about their uptake of different sized particles or the nature of the induced immunological imprint. We investigated comparatively the immunological imprints of inert nontoxic polystyrene nanoparticles 50 nm in diameter (PS50G) and 500 nm in diameter (PS500G). Following intratracheal instillation into naive mice, PS50G were preferentially taken up by alveolar and nonalveolar macrophages, B cells, and CD11b+ and CD103+ DC in the lung, but exclusively by DC in the draining lymph node (LN). Negligible particle uptake occurred in the draining LN 2 h postinstillation, indicating that particle translocation does not occur via lymphatic drainage. PS50G but not PS500G significantly increased airway levels of mediators that drive DC migration/maturation and DC costimulatory molecule expression. Both particles decreased frequencies of stimulatory CD11b+MHC class IIhi allergen-laden DC in the draining LN, with PS50G having the more pronounced effect. These distinctive particle imprints differentially modulated induction of acute allergic airway inflammation, with PS50G but not PS500G significantly inhibiting adaptive allergen-specific immunity. Our data show that nanoparticles are taken up preferentially by lung APC stimulate cytokine/chemokine production and pulmonary DC maturation and translocate to the lung-draining LN via cell-associated transport. Collectively, these distinctive particle imprints differentially modulate development of subsequent lung immune responses. These findings support the development of lung-specific particulate vaccines, drug delivery systems, and immunomodulators.


Current Medicinal Chemistry | 2013

Myeloid Derived Suppressor Cells and Their Role in Diseases

Ying Ying Kong; Martina Fuchsberger; Sue Dong Xiang; Vasso Apostolopoulos; Magdalena Plebanski

Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitors that can play a major role in tumour development and chronic inflammation. The importance of the suppressive function ofMDSCs was first suggested by studies involving cancer patients and cancer-bearing mice. In addition, recent studies have demonstrated that MDSCs can also be involved in many other pathological conditions. MDSCs have unique ways of abrogatingan immune response in addition to those utilised by other immune-suppressive cell types, for example via the induction of arginase-1 and consequent upregulation in reactive oxygen species (ROS) production. Due to their heterogeneity,they further can express a variety of lineage markers, which overlap with other myeloid cell types such as Gr1,CD11b, MHCIIlo, Ly6C and Ly6G, making it difficult to identify them by surface phenotype alone. The disparity between mouse and human MDSCs further complicates the identification of these elusive cell populations. In this review, we will summarise the recent updates on the methods for eliciting and studying different MDSC subsets, including newly proposed surface phenotypes, as well as insights into how their function is being characterised in both mice and humans. In addition, exciting new discoveries suggesting their involvement across a number of different pathological settings, such as sepsis, autoimmunity and Leishmaniasis, will be discussed.


Journal of Immunology | 2012

Inert 50-nm Polystyrene Nanoparticles That Modify Pulmonary Dendritic Cell Function and Inhibit Allergic Airway Inflammation

Charles L. Hardy; Jeanne S. LeMasurier; Gabrielle T. Belz; Karen Scalzo-Inguanti; Jun Yao; Sue Dong Xiang; Peter Kanellakis; Alex Bobik; Deborah H. Strickland; Jennifer M. Rolland; Robyn E. O'Hehir; Magdalena Plebanski

Nanoparticles are being developed for diverse biomedical applications, but there is concern about their potential to promote inflammation, particularly in the lung. Although a variety of ambient, anthropogenic and man-made nanoparticles can promote lung inflammation, little is known about the long-term immunomodulatory effects of inert noninflammatory nanoparticles. We previously showed polystyrene 50-nm nanoparticles coated with the neutral amino acid glycine (PS50G nanoparticles) are not inflammatory and are taken up preferentially by dendritic cells (DCs) in the periphery. We tested the effects of such nanoparticles on pulmonary DC function and the development of acute allergic airway inflammation. Surprisingly, exposure to PS50G nanoparticles did not exacerbate but instead inhibited key features of allergic airway inflammation including lung airway and parenchymal inflammation, airway epithelial mucus production, and serum allergen-specific IgE and allergen-specific Th2 cytokines in the lung-draining lymph node (LN) after allergen challenge 1 mo later. PS50G nanoparticles themselves did not induce lung oxidative stress or cardiac or lung inflammation. Mechanistically, PS50G nanoparticles did not impair peripheral allergen sensitization but exerted their effect at the lung allergen challenge phase by inhibiting expansion of CD11c+MHCIIhi DCs in the lung and draining LN and allergen-laden CD11bhiMHCIIhi DCs in the lung after allergen challenge. PS50G nanoparticles further suppressed the ability of CD11bhi DCs in the draining LN of allergen-challenged mice to induce proliferation of OVA-specific CD4+ T cells. The discovery that a defined type of nanoparticle can inhibit, rather than promote, lung inflammation via modulation of DC function opens the door to the discovery of other nanoparticle types with exciting beneficial properties.


Drug Metabolism Reviews | 2014

The effects of engineered nanoparticles on pulmonary immune homeostasis.

Rohimah Mohamud; Sue Dong Xiang; Cordelia Selomulya; Jennifer M. Rolland; Robyn E. O'Hehir; Charles L. Hardy; Magdalena Plebanski

Abstract Engineered nanoparticles (ENP), which could be composed of inorganic metals, metal oxides, metalloids, organic biodegradable and inorganic biocompatible polymers, are being used as carriers for vaccine and drug delivery. There is also increasing interest in their application as delivery agents for the treatment of a variety of lung diseases. Although many studies have shown ENP can be effectively and safely used to enhance the delivery of drugs and vaccines in the periphery, there is concern that some ENP could promote inflammation, with unknown consequences for lung immune homeostasis. In this study, we review research on the effects of ENP on lung immunity, focusing on recent studies using diverse animal models of human lung disease. We summarize how the inflammatory and immune response to ENP is influenced by the diverse biophysical and chemical characteristics of the particles including composition, size and mode of delivery. We further discuss newly described unexpected beneficial properties of ENP administered into the lung, where biocompatible polystyrene or silver nanoparticles can by themselves decrease susceptibility to allergic airways inflammation. Increasing our understanding of the differential effects of diverse types of nanoparticles on pulmonary immune homeostasis, particularly previously underappreciated beneficial outcomes, supports rational ENP translation into novel therapeutics for prevention and/or treatment of inflammatory lung disorders.


Frontiers in Microbiology | 2015

Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

Kirsty Wilson; Sue Dong Xiang; Magdalena Plebanski

The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2+ Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.


Gene Therapy | 2014

Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery.

F M Nawwab AL-Deen; Cordelia Selomulya; Ying Ying Kong; Sue Dong Xiang; Charles Ma; Ross L. Coppel; Magdalena Plebanski

Dendritic cells (DC) targeting vaccines require high efficiency for uptake, followed by DC activation and maturation. We used magnetic vectors comprising polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles, with hyaluronic acid (HA) of different molecular weights (<10 and 900 kDa) to reduce cytotoxicity and to facilitate endocytosis of particles into DCs via specific surface receptors. DNA encoding Plasmodium yoelii merozoite surface protein 1–19 and a plasmid encoding yellow fluorescent gene were added to the magnetic complexes with various % charge ratios of HA: PEI. The presence of magnetic fields significantly enhanced DC transfection and maturation. Vectors containing a high-molecular-weight HA with 100% charge ratio of HA: PEI yielded a better transfection efficiency than others. This phenomenon was attributed to their longer molecular chains and higher mucoadhesive properties aiding DNA condensation and stability. Insights gained should improve the design of more effective DNA vaccine delivery systems.

Collaboration


Dive into the Sue Dong Xiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge