Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sue-Jane Lin is active.

Publication


Featured researches published by Sue-Jane Lin.


Blood | 2009

EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines

Shu-Chun Tsai; Sue-Jane Lin; Po-Wen Chen; Wen-Yi Luo; Te-Huei Yeh; Hsei-Wei Wang; Chi-Ju Chen; Ching-Hwa Tsai

Epstein-Barr virus (EBV) infection can modify the cytokine expression profiles of host cells and determine the fate of those cells. Of note, expression of interleukin-13 (IL-13) may be detected in EBV-associated Hodgkin lymphoma and the natural killer (NK) cells of chronic active EBV-infected patients, but its biologic role and regulatory mechanisms are not understood. Using cytokine antibody arrays, we found that IL-13 production is induced in B cells early during EBV infection. Furthermore, the EBV lytic protein, Zta (also known as the BZLF-1 product), which is a transcriptional activator, was found to induce IL-13 expression following transfection. Mechanistically, induction of IL-13 expression by Zta is mediated directly through its binding to the IL-13 promoter, via a consensus AP-1 binding site. Blockade of IL-13 by antibody neutralization showed that IL-13 is required at an early stage of EBV-induced proliferation and for long-term maintenance of the growth of EBV immortalized lymphoblastoid cell lines (LCLs). Thus, Zta-induced IL-13 production facilitates B-cell proliferation and may contribute to the pathogenesis of EBV-associated lymphoproliferative disorders, such as posttransplantation lymphoproliferative disease (PTLD) and Hodgkin lymphoma.


Journal of Experimental Medicine | 2007

Programmed death-1 (PD-1) defines a transient and dysfunctional oligoclonal T cell population in acute homeostatic proliferation

Sue-Jane Lin; Craig D. Peacock; Kapil Bahl; Raymond M. Welsh

The host responds to lymphopenic environments by acute homeostatic proliferation, which is a cytokine- and endogenous peptide-driven expansion of lymphocytes that restores the numbers and diversity of T cells. It is unknown how these homeostatically proliferating (HP) cells are ultimately controlled. Using a system where lymphocytic choriomeningitis virus–immune C57BL/6 splenocytes were transferred into lymphopenic T cell–deficient hosts and allowed to reconstitute the environment, we defined the following three populations of T cells: slowly dividing Ly6C+ cells, which contained bona fide virus-specific memory cells, and more rapidly dividing Ly6C− cells segregating into programmed death (PD)-1+ and PD-1− fractions. The PD-1+ HP cell population, which peaked in frequency at day 21, was dysfunctional in that it failed to produce interferon γ or tumor necrosis factor α on T cell receptor (TCR) stimulation, had down-regulated expression of interleukin (IL)-7Rα, IL-15Rβ, and Bcl-2, and reacted with Annexin V, which is indicative of a preapoptotic state. The PD-1+ HP cells, in contrast to other HP cell fractions, displayed highly skewed TCR repertoires, which is indicative of oligoclonal expansion; these skewed repertoires and the PD-1+ population disappeared by day 70 from the host, presumably because of apoptosis. These results suggest that PD-1 may play a negative regulatory role to control rapidly proliferating and potentially pathogenic autoreactive CD8+ T cells during homeostatic reconstitution of lymphopenic environments.


Journal of Immunology | 2003

IL-4 Suppresses the Expression and the Replication of Hepatitis B Virus in the Hepatocellular Carcinoma Cell Line Hep3B

Sue-Jane Lin; Pei-Yun Shu; Chungming Chang; Ah-Kau Ng; Cheng-po Hu

IL-4 has been known as a Th2 cytokine and can act on B cells, T cells, and monocytes. In this study we demonstrate that IL-4Rs are expressed on human hepatocellular carcinoma (HCC) cells. We found that IL-4 suppresses hepatitis B surface Ag (HBsAg) mRNA and HBsAg production in the Hep3B cell line, which contains an integrated hepatitis B virus (HBV) genome and constitutively secretes HBsAg. When Hep3B cells are further transfected with the plasmid pHBV3.6 that contains >1 U of HBV genome, IL-4 could suppress the production of all HBV RNA and secreted HBsAg and hepatitis B virus e Ag. Furthermore, an endogenous DNA polymerase activity assay shows a decrease in HBV DNA after IL-4 treatment. Using luciferase reporter assays we have demonstrated that IL-4 could suppress the activity of the surface promoter II and the core promotor (CP). To delineate how IL-4 suppressed the transcription of HBV genes, we have examined the effect of IL-4 on the expression of transcription factors that are known to bind to the core upstream regulatory sequence, which colocalizes with enhancer II of the HBV genome. Our results demonstrate that IL-4 suppresses the expression of C/EBPα. Furthermore, overexpression of C/EBPα blocked 43 and 30% of the IL-4-mediated suppression of CP activity and IL-4-induced suppression of pregenomic RNA, respectively. Finally, we have demonstrated that mutations affecting the C/EBPα-binding sites on core upstream regulatory sequence/enhancer II completely abolish the IL-4-mediated suppression of CP activity. Thus, down-regulation of C/EBPα may be involved in the anti-HBV effect of IL-4 in Hep3B cells.


PLOS ONE | 2013

MDA5 Plays a Crucial Role in Enterovirus 71 RNA-Mediated IRF3 Activation

Rei-Lin Kuo; Li-Ting Kao; Sue-Jane Lin; Robert Yung-Liang Wang; Shin-Ru Shih

Induction of type-I interferons (IFNs), IFN-α/β, is crucial to innate immunity against RNA virus infection. Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), are critical pathogen sensors for activation of type-I IFN expression in response to RNA virus infection. MDA5 is required for type-I IFN expression in mouse models in response to infection by picornaviruses, such as encephalomyocarditis virus (EMCV) and coxsackievirus B3. Enterovirus 71 (EV71) belongs to picornaviridae and contains positive-stranded RNA genome that is linked with VPg protein at the 5′ end. Although a recent study showed that EV71 3C protease could suppress RIG-I-mediated IFN-β response, the cytoplasmic RIG-I-like receptor that is directly involved in the recognition of EV71 RNA remains unclear. Using EV71-derived RNA as an agonist, we demonstrate that MDA5 is involved in EV71 RNA-mediated IRF3 activation and IFN-β transcription. Our data also show that overexpression of the MDA5 protein reverses the suppression of IRF3 activation caused by EV71 infection. These results indicate that MDA5 is an important factor for EV71 RNA-activated type-I IFN expression. Furthermore, we also show that EV71 infection enhances MDA5 degradation and that the degradation could be inhibited by a broad spectrum caspase inhibitor.


Inflammation | 2011

Sesamin Inhibits Macrophage-Induced Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 Expression and Proangiogenic Activity in Breast Cancer Cells

Chun Chung Lee; Ko Jiunn Liu; Yu Chen Wu; Sue-Jane Lin; Ching Chun Chang; Tze Sing Huang

Sesamin is a sesame component with antihypertensive and antioxidative activities and has recently aroused much interest in studying its potential anticancer application. Macrophage is one of the infiltrating inflammatory cells in solid tumor and may promote tumor progression via enhancement of tumor angiogenesis. In this study, we investigated whether sesamin inhibited macrophage-enhanced proangiogenic activity of breast cancer cell lines MCF-7 and MDA-MB-231. Using vascular endothelial cell capillary tube and network formation assays, both breast cancer cell lines exhibited elevated proangiogenic activities after coculture with macrophages or pretreatment with macrophage-conditioned medium. This elevation of proangiogenic activity was drastically suppressed by sesamin. Vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) induced by macrophages in both cell lines were also inhibited by sesamin. Nuclear levels of HIF-1α and NF-κB, important transcription factors for VEGF and MMP-9 expression, respectively, were obviously reduced by sesamin. VEGF induction by macrophage in MCF-7 cells was shown to be via ERK, JNK, phosphatidylinositol 3-kinase, and NF-κB-mediated pathways. These signaling molecules and additional p38MAPK were also involved in macrophage-induced MMP-9 expression. Despite such diverse pathways were induced by macrophage, only Akt and p38MAPK activities were potently inhibited by sesamin. Expression of interleukin (IL)-6, IL-8, and tumor necrosis factor-α were substantially increased and involved in macrophage-induced VEGF and MMP-9 mRNA expression in MCF-7 cells. Sesamin effectively inhibited the expression of these cytokines to avoid the reinforced induction of VEGF and MMP-9. In conclusion, sesamin potently inhibited macrophage-enhanced proangiogenic activity of breast cancer cells via inhibition of VEGF and MMP-9 induction.


American Journal of Pathology | 2010

Pathological Features of Heterologous Immunity Are Regulated by the Private Specificities of the Immune Repertoire

Siwei Nie; Sue-Jane Lin; Sung-Kwon Kim; Raymond M. Welsh; Liisa K. Selin

Heterologous immunity associated with cross-reactive T-cell responses is proposed to contribute to variations among individuals in the pathogenesis of human viral infections. In genetically identical mice with similar infection histories, marked variations in the magnitude and specificities of T-cell responses under conditions of heterologous immunity occur and have been linked to the private specificity of T-cell repertoires in individual immune mice. Variations in immunopathology in the form of panniculitis are observed in lymphocytic choriomeningitis virus-immune mice after vaccinia virus infection. By adoptively transferring splenocytes from individual lymphocytic choriomeningitis virus-immune donors into paired recipients, we show here that, on vaccinia virus infection, similar levels of panniculitis were generated in recipients from a single donor, but the severity of panniculitis varied among recipients receiving cells from different donors. This indicates that virus-induced immunopathology under conditions of heterologous immunity is a function of the private specificity of the immune repertoire.


Journal of Virology | 2011

Interplay between PKCδ and Sp1 on Histone Deacetylase Inhibitor-Mediated Epstein-Barr Virus Reactivation

Pei-Fang Tsai; Sue-Jane Lin; Pei-Lun Weng; Shu-Chun Tsai; Jiun-Han Lin; Ya-Ching Chou; Ching-Hwa Tsai

ABSTRACT Epstein-Barr virus (EBV) undergoes latent and lytic replication cycles, and its reactivation from latency to lytic replication is initiated by expression of the two viral immediate-early transactivators, Zta and Rta. In vitro, reactivation of EBV can be induced by anti-immunoglobulin, tetradecanoyl phorbol acetate, and histone deacetylase inhibitor (HDACi). We have discovered that protein kinase C delta (PKCδ) is required specifically for EBV reactivation by HDACi. Overexpression of PKCδ is sufficient to induce the activity of the Zta promoter (Zp) but not of the Rta promoter (Rp). Deletion analysis revealed that the ZID element of Zp is important for PKCδ activation. Moreover, the Sp1 putative sequence on ZID is essential for PKCδ-induced Zp activity, and the physiological binding of Sp1 on ZID has been confirmed. After HDACi treatment, activated PKCδ can phosphorylate Sp1 at serine residues and might result in dissociation of the HDAC2 repressor from ZID. HDACi-mediated HDAC2-Sp1 dissociation can be inhibited by the PKCδ inhibitor, Rotterlin. Furthermore, overexpression of HDAC2 can suppress the HDACi-induced Zp activity. Consequently, we hypothesize that HDACi induces PKCδ activation, causing phosphorylation of Sp1, and that the interplay between PKCδ and Sp1 results in the release of HDAC2 repressor from Zp and initiation of Zta expression.


Journal of Biological Chemistry | 2010

Regulation of microtubule dynamics through phosphorylation on stathmin by Epstein-Barr virus kinase BGLF4.

Po-Wen Chen; Sue-Jane Lin; Shu-Chun Tsai; Jiun-Han Lin; Mei-Ru Chen; Jiin-Tarng Wang; Chung-Pei Lee; Ching-Hwa Tsai

Stathmin is an important microtubule (MT)-destabilizing protein, and its activity is differently attenuated by phosphorylation at one or more of its four phosphorylatable serine residues (Ser-16, Ser-25, Ser-38, and Ser-63). This phosphorylation of stathmin plays important roles in mitotic spindle formation. We observed increasing levels of phosphorylated stathmin in Epstein-Barr virus (EBV)-harboring lymphoblastoid cell lines (LCLs) and nasopharyngeal carcinoma (NPC) cell lines during the EBV lytic cycle. These suggest that EBV lytic products may be involved in the regulation of stathmin phosphorylation. BGLF4 is an EBV-encoded kinase and has similar kinase activity to cdc2, an important kinase that phosphorylates serine residues 25 and 38 of stathmin during mitosis. Using an siRNA approach, we demonstrated that BGLF4 contributes to the phosphorylation of stathmin in EBV-harboring NPC. Moreover, we confirmed that BGLF4 interacts with and phosphorylates stathmin using an in vitro kinase assay and an in vivo two-dimensional electrophoresis assay. Interestingly, unlike cdc2, BGLF4 was shown to phosphorylate non-proline directed serine residues of stathmin (Ser-16) and it mediated phosphorylation of stathmin predominantly at serines 16, 25, and 38, indicating that BGLF4 can down-regulate the activity of stathmin. Finally, we demonstrated that the pattern of MT organization was changed in BGLF4-expressing cells, possibly through phosphorylation of stathmin. In conclusion, we have shown that a viral Ser/Thr kinase can directly modulate the activity of stathmin and this contributes to alteration of cellular MT dynamics and then may modulate the associated cellular processes.


Apoptosis | 2007

Prevention of TGF-β-induced apoptosis by interlukin-4 through Akt activation and p70S6K survival signaling pathways

Sue-Jane Lin; Chungming Chang; Ah-Kau Ng; Shu-Han Wang; Jia-Je Li; Cheng-po Hu

In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-β (TGF-β). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-β-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-β-induced apoptosis.


Journal of Virology | 2013

Autocrine CCL3 and CCL4 Induced by the Oncoprotein LMP1 Promote Epstein-Barr Virus-Triggered B Cell Proliferation

Shu-Chun Tsai; Sue-Jane Lin; Cheau-Jye Lin; Ya-Ching Chou; Jiun-Han Lin; Te-Huei Yeh; Mei-Ru Chen; Li-Min Huang; Meng-You Lu; Ya-Chi Huang; Huan-Yun Chen; Ching-Hwa Tsai

ABSTRACT Epstein-Barr virus (EBV) alters the regulation and expression of a variety of cytokines in its host cells to modulate host immune surveillance and facilitate viral persistence. Using cytokine antibody arrays, we found that, in addition to the cytokines reported previously, two chemotactic cytokines, CCL3 and CCL4, were induced in EBV-infected B cells and were expressed at high levels in all EBV-immortalized lymphoblastoid cell lines (LCLs). Furthermore, EBV latent membrane protein 1 (LMP1)-mediated Jun N-terminal protein kinase activation was responsible for upregulation of CCL3 and CCL4. Inhibition of CCL3 and CCL4 in LCLs using a short hairpin RNA approach or by neutralizing antibodies suppressed cell proliferation and caused apoptosis, indicating that autocrine CCL3 and CCL4 are required for LCL survival and growth. Importantly, significant amounts of CCL3 were detected in EBV-positive plasma from immunocompromised patients, suggesting that EBV modulates this chemokine in vivo. This study reveals the regulatory mechanism and a novel function of CCL3 and CCL4 in EBV-infected B cells. CCL3 might be useful as a therapeutic target in EBV-associated lymphoproliferative diseases and malignancies.

Collaboration


Dive into the Sue-Jane Lin's collaboration.

Top Co-Authors

Avatar

Ching-Hwa Tsai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mei-Ru Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jiun-Han Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya-Ching Chou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Raymond M. Welsh

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu-Chun Tsai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Te-Huei Yeh

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge