Sue L. Jaspersen
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sue L. Jaspersen.
Molecular Cell | 2009
Julia M. Schulze; Jessica Jackson; Shima Nakanishi; Jennifer M. Gardner; Thomas Hentrich; Jeff Haug; Mark Johnston; Sue L. Jaspersen; Michael S. Kobor; Ali Shilatifard
To identify regulators involved in determining the differential pattern of H3K79 methylation by Dot1, we screened the entire yeast gene deletion collection by GPS for genes required for normal levels of H3K79 di- but not trimethylation. We identified the cell cycle-regulated SBF protein complex required for H3K79 dimethylation. We also found that H3K79 di- and trimethylation are mutually exclusive, with M/G1 cell cycle-regulated genes significantly enriched for H3K79 dimethylation. Since H3K79 trimethylation requires prior monoubiquitination of H2B, we performed genome-wide profiling of H2BK123 monoubiquitination and showed that H2BK123 monoubiquitination is not detected on cell cycle-regulated genes and sites containing H3K79me2, but is found on H3K79me3-containing regions. A screen for genes responsible for the establishment/removal of H3K79 dimethylation resulted in identification of NRM1 and WHI3, both of which impact the transcription by the SBF and MBF protein complexes, further linking the regulation of methylation status of H3K79 to the cell cycle.
Journal of Cell Biology | 2007
Jennifer M. Bupp; Adriana E. Martin; Elizabeth S. Stensrud; Sue L. Jaspersen
Positioning of telomeres at the nuclear periphery can have dramatic effects on gene expression by establishment of heritable, transcriptionally repressive subdomains. However, little is known about the integral membrane proteins that mediate telomere tethering at the nuclear envelope. Here, we find a previously unrecognized function for the Saccharomyces cerevisiae Sad1-UNC-84 domain protein Mps3 in regulating telomere positioning in mitotic cells. Our data demonstrate that the nucleoplasmic N-terminal acidic domain of Mps3 is not essential for viability. However, this acidic domain is necessary and sufficient for telomere tethering during S phase and the silencing of reporter constructs integrated at telomeres. We show that this is caused by the role of the Mps3 acidic domain in binding and localization of the silent information regulator protein Sir4 to the nuclear periphery. Thus, Mps3 functions as an integral membrane anchor for telomeres and is a novel nuclear receptor for the Sir4 pathway of telomere tethering and gene inactivation.
Journal of Cell Biology | 2002
Sue L. Jaspersen; Thomas H. Giddings; Mark Winey
Accurate duplication of the Saccharomyces cerevisiae spindle pole body (SPB) is required for formation of a bipolar mitotic spindle. We identified mutants in SPB assembly by screening a temperature-sensitive collection of yeast for defects in SPB incorporation of a fluorescently marked integral SPB component, Spc42p. One SPB assembly mutant contained a mutation in a previously uncharacterized open reading frame that we call MPS3 (for monopolar spindle). mps3-1 mutants arrest in mitosis with monopolar spindles at the nonpermissive temperature, suggesting a defect in SPB duplication. Execution point experiments revealed that MPS3 function is required for the first step of SPB duplication in G1. Like cells containing mutations in two other genes required for this step of SPB duplication (CDC31 and KAR1), mps3-1 mutants arrest with a single unduplicated SPB that lacks an associated half-bridge. MPS3 encodes an essential integral membrane protein that localizes to the SPB half-bridge. Genetic interactions between MPS3 and CDC31 and binding of Cdc31p to Mps3p in vitro, as well as the fact that Cdc31p localization to the SPB is partially dependent on Mps3p function, suggest that one function for Mps3p during SPB duplication is to recruit Cdc31p, the yeast centrin homologue, to the half-bridge.
Journal of Cell Biology | 2006
Sue L. Jaspersen; Adriana E. Martin; Galina V. Glazko; Thomas H. Giddings; Garry P. Morgan; Arcady Mushegian; Mark Winey
The spindle pole body (SPB) is the sole site of microtubule nucleation in Saccharomyces cerevisiae; yet, details of its assembly are poorly understood. Integral membrane proteins including Mps2 anchor the soluble core SPB in the nuclear envelope. Adjacent to the core SPB is a membrane-associated SPB substructure known as the half-bridge, where SPB duplication and microtubule nucleation during G1 occurs. We found that the half-bridge component Mps3 is the budding yeast member of the SUN protein family (Sad1-UNC-84 homology) and provide evidence that it interacts with the Mps2 C terminus to tether the half-bridge to the core SPB. Mutants in the Mps3 SUN domain or Mps2 C terminus have SPB duplication and karyogamy defects that are consistent with the aberrant half-bridge structures we observe cytologically. The interaction between the Mps3 SUN domain and Mps2 C terminus is the first biochemical link known to connect the half-bridge with the core SPB. Association with Mps3 also defines a novel function for Mps2 during SPB duplication.
Journal of Cell Biology | 2009
Shima Nakanishi; Jung Shin Lee; Kathryn E. Gardner; Jennifer M. Gardner; Yoh Hei Takahashi; Mahesh B. Chandrasekharan; Zu-Wen Sun; Mary Ann Osley; Brian D. Strahl; Sue L. Jaspersen; Ali Shilatifard
Histone H2B monoubiquitination by Rad6/Bre1 is required for the trimethylation of both histone H3K4 and H3K79 by COMPASS and Dot1 methyltransferases, respectively. The dependency of methylation at H3K4 and H3K79 on the monoubiquitination of H2BK123 was recently challenged, and extragenic mutations in the strain background used for previous studies or epitope-tagged proteins were suggested to be the sources of this discrepancy. In this study, we show that H3K4 and H3K79 methylation is solely dependent on H2B monoubiquitination regardless of any additional alteration to the H2B sequence or genome. Furthermore, we report that Y131, one of the yeast histone H2A/H2B shuffle strains widely used for the last decade in the field of chromatin and transcription biology, carries a wild-type copy of each of the HTA2 and HTB2 genes under the GAL1/10 promoter on chromosome II. Therefore, we generated the entire histone H2A and H2B alanine-scanning mutant strains in another background, which does not express wild-type histones.
Molecular Cell | 2011
Yoh Hei Takahashi; Julia M. Schulze; Jessica Jackson; Thomas Hentrich; Chris Seidel; Sue L. Jaspersen; Michael S. Kobor; Ali Shilatifard
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.
Science | 2011
Jamie M. Keck; Michele H. Jones; Catherine C. L. Wong; Jonathan Binkley; Daici Chen; Sue L. Jaspersen; Eric P. Holinger; Tao Xu; Mario Niepel; Michael P. Rout; Jackie Vogel; Arend Sidow; John R. Yates; Mark Winey
Phosphorylation of the yeast centrosome reveals sites of regulation and predicts complex regulation of mammalian centrosomes. Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)–directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within γ-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.
PLOS Genetics | 2011
Jennifer M. Friederichs; Suman Ghosh; Christine J. Smoyer; Scott McCroskey; Brandon D. Miller; Kyle J. Weaver; Kym M. Delventhal; Jay R. Unruh; Brian D. Slaughter; Sue L. Jaspersen
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Trends in Cell Biology | 2014
Santharam S. Katta; Christine J. Smoyer; Sue L. Jaspersen
The inner nuclear membrane (INM) of eukaryotic cells is enriched in proteins that are required for nuclear structure, chromosome organization, DNA repair, and transcriptional control. Mislocalization of INM proteins is observed in a wide spectrum of human diseases; however, the mechanism by which INM proteins reach their final destination is poorly understood. In this review we discuss how investigating INM composition, dissecting targeting pathways of conserved INM proteins in multiple systems and analyzing the nuclear transport of viruses and signaling complexes have broadened our knowledge of INM transport to include both nuclear pore complex-dependent and -independent pathways. The study of these INM targeting pathways is important to understanding nuclear organization and in both normal and diseased cells.
Journal of Cell Biology | 2011
Jennifer M. Gardner; Christine J. Smoyer; Elizabeth S. Stensrud; Richard Alexander; Madelaine Gogol; Winfried Wiegraebe; Sue L. Jaspersen
Binding of histone H2A.Z to the SUN family member Mps3 is chromatin independent.