Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sue Tsai is active.

Publication


Featured researches published by Sue Tsai.


Immunity | 2010

Reversal of Autoimmunity by Boosting Memory-like Autoregulatory T Cells

Sue Tsai; Afshin Shameli; Jun Yamanouchi; Xavier Clemente-Casares; Jinguo Wang; Pau Serra; Yang Yang; Zdravka Medarova; Anna Moore; Pere Santamaria

Blunting autoreactivity without compromising immunity remains an elusive goal in the treatment of autoimmunity. We show that progression to autoimmune diabetes results in the conversion of naive low-avidity autoreactive CD8(+) T cells into memory-like autoregulatory cells that can be expanded in vivo with nanoparticles coated with disease-relevant peptide-major histocompatibility complexes (pMHC-NP). Treatment of NOD mice with monospecific pMHC-NPs expanded cognate autoregulatory T cells, suppressed the recruitment of noncognate specificities, prevented disease in prediabetic mice, and restored normoglycemia in diabetic animals. pMHC-NP therapy was inconsequential in mice engineered to bear an immune system unresponsive to the corresponding epitope, owing to absence of epitope-experienced autoregulatory T cells. pMHC-NP-expanded autoregulatory T cells suppressed local presentation of autoantigens in an interferon-gamma-, indoleamine 2,3-dioxygenase-, and perforin-dependent manner. Nanoparticles coated with human diabetes-relevant pHLA complexes restored normoglycemia in a humanized model of diabetes. These observations expose a paradigm in the pathogenesis of autoimmunity amenable for therapeutic intervention.


Cell | 2006

TRPV1+ Sensory Neurons Control β Cell Stress and Islet Inflammation in Autoimmune Diabetes

Rozita Razavi; Yin Chan; F. Nikoo Afifiyan; Xue Jun Liu; Xiang Wan; Jason Yantha; Hubert Tsui; Lan Tang; Sue Tsai; Pere Santamaria; John P. Driver; David V. Serreze; Michael W. Salter; H.-Michael Dosch

In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.


ACS Nano | 2015

Nanoparticle-based immunotherapy for cancer.

Kun Shao; Santiswarup Singha; Xavier Clemente-Casares; Sue Tsai; Yang Yang; Pere Santamaria

The design of nanovaccines capable of triggering effective antitumor immunity requires an understanding of how the immune system senses and responds to threats, including pathogens and tumors. Equally important is an understanding of the mechanisms employed by tumor cells to evade immunity and an appreciation of the deleterious effects that antitumor immune responses can have on tumor growth, such as by skewing tumor cell composition toward immunologically silent tumor cell variants. The immune system and tumors engage in a tug-of-war driven by competition where promoting antitumor immunity or tumor cell death alone may be therapeutically insufficient. Nanotechnology affords a unique opportunity to develop therapeutic compounds than can simultaneously tackle both aspects, favoring tumor eradication. Here, we review the current status of nanoparticle-based immunotherapeutic strategies for the treatment of cancer, ranging from antigen/adjuvant delivery vehicles (to professional antigen-presenting cell types of the immune system) to direct tumor antigen-specific T-lymphocyte-targeting compounds and their combinations thereof.


Nature | 2016

Expanding antigen-specific regulatory networks to treat autoimmunity

Xavier Clemente-Casares; Jesús Blanco; Poornima Ambalavanan; Jun Yamanouchi; Santiswarup Singha; Cesar Fandos; Sue Tsai; Jinguo Wang; Nahir Garabatos; Cristina Izquierdo; Smriti M. Agrawal; Michael B. Keough; V. Wee Yong; Eddie James; Anna Moore; Yang Yang; Thomas Stratmann; Pau Serra; Pere Santamaria

Regulatory T cells hold promise as targets for therapeutic intervention in autoimmunity, but approaches capable of expanding antigen-specific regulatory T cells in vivo are currently not available. Here we show that systemic delivery of nanoparticles coated with autoimmune-disease-relevant peptides bound to major histocompatibility complex class II (pMHCII) molecules triggers the generation and expansion of antigen-specific regulatory CD4+ T cell type 1 (TR1)-like cells in different mouse models, including mice humanized with lymphocytes from patients, leading to resolution of established autoimmune phenomena. Ten pMHCII-based nanomedicines show similar biological effects, regardless of genetic background, prevalence of the cognate T-cell population or MHC restriction. These nanomedicines promote the differentiation of disease-primed autoreactive T cells into TR1-like cells, which in turn suppress autoantigen-loaded antigen-presenting cells and drive the differentiation of cognate B cells into disease-suppressing regulatory B cells, without compromising systemic immunity. pMHCII-based nanomedicines thus represent a new class of drugs, potentially useful for treating a broad spectrum of autoimmune conditions in a disease-specific manner.


Frontiers in Immunology | 2013

MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity

Sue Tsai; Pere Santamaria

Major histocompatibility complex (MHC) genes, also known as human leukocyte antigen genes (HLA) in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D), multiple sclerosis, and rheumatoid arthritis, among others (1–3). Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T-cell repertoires of the host toward autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development toward a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development toward non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T-cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T-cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.


Journal of Immunology | 2008

The Proline-Rich Sequence of CD3ε as an Amplifier of Low-Avidity TCR Signaling

Pankaj Tailor; Sue Tsai; Afshin Shameli; Pau Serra; Jinguo Wang; Stephen M. Robbins; Masao Nagata; Andrea L. Szymczak-Workman; Dario A. A. Vignali; Pere Santamaria

Engagement of peptide-MHC by the TCR induces a conformational change in CD3ε that exposes a proline-rich sequence (PRS) and recruits the cytoskeletal adaptor Nck. This event, which precedes phosphorylation of the CD3ε ITAM, has been implicated in synapse formation and T cell function. However, there is compelling evidence that responsiveness to TCR ligation is CD3ε PRS independent. In this study, we show that the CD3ε PRS is necessary for peptide-MHC-induced phosphorylation of CD3ε and for recruitment of protein kinase Cθ to the immune synapse in differentiated CD8+ T lymphocytes. However, whereas these two events are dispensable for functional T cell responsiveness to high-avidity ligands, they are required for responsiveness to low-avidity ones. Thus, in at least certain T cell clonotypes, the CD3ε PRS amplifies weak TCR signals by promoting synapse formation and CD3ε phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation

Jinguo Wang; Sue Tsai; Afshin Shameli; Jun Yamanouchi; Gonnie M. Alkemade; Pere Santamaria

A current paradigm states that non-antigen-specific inflammatory cues attract noncognate, bystander T cell specificities to sites of infection and autoimmune inflammation. Here we show that cues emanating from a tissue undergoing spontaneous autoimmune inflammation cannot recruit naive or activated bystander T cell specificities in the absence of local expression of cognate antigen. We monitored the recruitment of CD8+ T cells specific for the prevalent diabetogenic epitope islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206–214 in gene-targeted nonobese diabetic (NOD) mice expressing a T cell “invisible” IGRP206–214 sequence. These mice developed islet inflammation and diabetes with normal incidence and kinetics, but their inflammatory lesions could recruit neither naive (endogenous or exogenous) nor ex vivo-activated IGRP206–214-reactive CD8+ T cells. Conversely, IGRP206–214-reactive, but not nonautoreactive CD8+ T cells rapidly homed to and accumulated in the inflamed islets of wild-type NOD mice. Our results indicate that CD8+ T cell recruitment to a site of autoimmune inflammation results from an active process that is strictly dependent on local display of cognate pMHC and suggest that CD8+ T cells contained in extralymphoid autoimmune lesions are largely autoreactive.


Magnetic Resonance in Medicine | 2008

In vivo imaging of a diabetogenic CD8+ T cell response during type 1 diabetes progression.

Zdravka Medarova; Sue Tsai; Natalia V. Evgenov; Pere Santamaria; Anna Moore

Type 1 diabetes is preceded by a long, protracted period of pancreatic islet inflammation by autoreactive lymphocytes. Noninvasive imaging of islet inflammation prior to the onset of hyperglycemia might have diagnostic and therapeutic implications, but this is not currently possible. Here, MRI is used to track, noninvasively, the accumulation diabetogenic CD8+ T‐cells during type 1 diabetes progression in nonobese diabetic (NOD) mice. The contrast agent is an MRI probe (MN‐NRP‐V7) that specifically labels CD8+ T‐cells recognizing residues 206–214 of islet‐specific glucose‐6‐phosphatase catalytic subunit related protein (IGRP206–214) in the context of the major histocompatibility complex (MHC) class I molecule H‐2Kd. This probe consists of superparamagnetic iron oxide nanoparticles (MN) coated with Kd molecules presenting NRP‐V7, a high‐avidity mimotope of IGRP206–214. NOD mice of different ages (5, 8, 15, and 24 weeks) were imaged by MRI before and after a single intravenous injection of MN‐NRP‐V7 or unmodified MN nanoparticles. MN‐NRP‐V7 accumulation, as determined by semiquantitative MRI analysis of pancreas‐associated T2 relaxation time, was antigen‐specific, age‐dependent, and well correlated with the numbers of MN‐NRP‐V7‐labeled CD8+ T‐cells recovered from the pancreata of the treated mice. Antigen/MHC‐coupled nanoparticles represent a promising new avenue for noninvasive imaging of lymphocyte inflammation in organ‐specific autoimmunity and transplantation. Magn Reson Med, 2008.


Journal of Molecular Medicine | 2011

Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a “one size fits all” approach?

Xavier Clemente-Casares; Sue Tsai; Yang Yang; Pere Santamaria

Nanotechnology offers enormous potential in drug delivery and in vivo imaging. Nanoparticles (NPs), for example, are being extensively tested as scaffolds to deliver anti-cancer therapeutics or imaging tags. Our recent work, discussed herein, indicates that an opportunity exists to use NPs to deliver ligands for, and trigger, cognate receptors on T lymphocytes as a way to induce therapeutic immune responses in vivo. Specifically, systemic delivery of NPs coated with Type 1 diabetes (T1D)-relevant peptide-major histocompatibility complex molecules triggered the expansion of cognate memory autoregulatory (disease-suppressing) T cells, suppressed the progression of autoimmune attack against insulin-producing beta cells, and restored glucose homeostasis. This therapeutic avenue exploits a new paradigm in the progression of chronic autoimmune responses that enables the rational design of disease-specific “nanovaccines” capable of blunting autoimmunity without impairing systemic immunity, a long sought-after goal in the therapy of these disorders. Here, we discuss the research paths that led to the discovery of this therapeutic avenue and highlight the features that make it an attractive approach for the treatment, in an antigen-specific manner, of a whole host of autoimmune diseases.


Cellular and Molecular Life Sciences | 2011

CD8+ Tregs in autoimmunity: learning “self”-control from experience

Sue Tsai; Xavier Clemente-Casares; Pere Santamaria

Autoreactive CD8+ regulatory T cells (Tregs) play important roles as modulators of immune responses against self, and numerical and functional defects in CD8+ Tregs have been linked to autoimmunity. Several subsets of CD8+ Tregs have been described. However, the origin of these T cells and how they participate in the natural progression of autoimmunity remain poorly defined. We discuss several lines of evidence suggesting that the autoimmune process itself promotes the development of autoregulatory CD8+ T cells. We posit that chronic autoantigenic exposure fosters the differentiation of non-pathogenic autoreactive CD8+ T cells into antigen-experienced, memory-like autoregulatory T cells, to generate a “negative feedback” regulatory loop capable of countering pathogenic autoreactive effectors. This hypothesis predicts that approaches capable of boosting autoregulatory T cell memory will be able to blunt autoimmunity without compromising systemic immunity.

Collaboration


Dive into the Sue Tsai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Yang

University of Calgary

View shared research outputs
Top Co-Authors

Avatar

Pau Serra

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Huang

Alberta Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge