Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sueli Fumie Yamada-Ogatta is active.

Publication


Featured researches published by Sueli Fumie Yamada-Ogatta.


Fems Yeast Research | 2008

Characteristics of biofilm formation by Candida tropicalis and antifungal resistance.

Fernando César Bizerra; Celso Vataru Nakamura; Celina de Oliveira Poersch; Terezinha Inez Estivalet Svidzinski; Regina Mariuza Borsato Quesada; Samuel Goldenberg; Marco Aurélio Krieger; Sueli Fumie Yamada-Ogatta

Candida tropicalis is a common species related to nosocomial candidemia and candiduria. Most Candida spp. infections are associated with biofilm formation on implanted medical devices or on host epithelial cell surfaces. Sessile cells display phenotypic traits dramatically different from those of their free-living, planktonic counterparts, such as increased resistance to antimicrobial agents and to host defenses. The characteristics of C. tropicalis biofilm formation in vitro are described. By an XTT-reduction assay, an increase in metabolic activity was observed up to 24 h of biofilm formation, and this activity showed a linear relationship with sessile cell density. Scanning electron microscopy was used to further characterize C. tropicalis biofilms. The initial adherence of yeast cells was followed by germination, microcolony formation, filamentation and maturation at 24-48 h. Mature biofilms consisted of a dense network of yeast cells and filamentous forms of C. tropicalis. Increased resistance of sessile cells against fluconazole and amphotericin B was also demonstrated. Real-time reverse transcription-PCR quantification showed that sessile cells overexpressed ERG11 (coding for lanosterol 14 alpha-demethylase) and MDR1 (coding for an efflux protein belonging to the major facilitator superfamily). These mechanisms may contribute to the fluconazole resistance of the C. tropicalis biofilm.


Fems Yeast Research | 2008

RESEARCH ARTICLE: Characteristics of biofilm formation by Candida tropicalis and antifungal resistance

Fernando César Bizerra; Celso Vataru Nakamura; Celina de Oliveira Poersch; Terezinha Inez Estivalet Svidzinski; Regina Mariuza Borsato Quesada; Samuel Goldenberg; Marco Aurélio Krieger; Sueli Fumie Yamada-Ogatta

Candida tropicalis is a common species related to nosocomial candidemia and candiduria. Most Candida spp. infections are associated with biofilm formation on implanted medical devices or on host epithelial cell surfaces. Sessile cells display phenotypic traits dramatically different from those of their free-living, planktonic counterparts, such as increased resistance to antimicrobial agents and to host defenses. The characteristics of C. tropicalis biofilm formation in vitro are described. By an XTT-reduction assay, an increase in metabolic activity was observed up to 24 h of biofilm formation, and this activity showed a linear relationship with sessile cell density. Scanning electron microscopy was used to further characterize C. tropicalis biofilms. The initial adherence of yeast cells was followed by germination, microcolony formation, filamentation and maturation at 24-48 h. Mature biofilms consisted of a dense network of yeast cells and filamentous forms of C. tropicalis. Increased resistance of sessile cells against fluconazole and amphotericin B was also demonstrated. Real-time reverse transcription-PCR quantification showed that sessile cells overexpressed ERG11 (coding for lanosterol 14 alpha-demethylase) and MDR1 (coding for an efflux protein belonging to the major facilitator superfamily). These mechanisms may contribute to the fluconazole resistance of the C. tropicalis biofilm.


Molecular and Biochemical Parasitology | 2001

Cloning and characterization of the metacyclogenin gene, which is specifically expressed during Trypanosoma cruzi metacyclogenesis ☆

Andréa Rodrigues Ávila; Sueli Fumie Yamada-Ogatta; Viviane da Silva Monteiro; Marco A. Krieger; Celso Vataru Nakamura; Wanderley de Souza; Samuel Goldenberg

We isolated a gene that is differentially expressed during Trypanosoma cruzi metacyclogenesis by the representation of differential expression (RDE) method, using differentiating epimastigotes cultured in chemically defined medium. This gene, the metacyclogenin gene, encodes a 630-nucleotide mRNA that is specifically associated with the polysomes of epimastigotes allowed to differentiate for 24 h. We sequenced and characterized the metacyclogenin gene and found that there were at least three copies of the gene organized into tandem 2.8 kb repeats in the genome of T. cruzi Dm28c. We analyzed the repeats and found that they contained two other genes, one encoding tryparedoxin peroxidase and the other encoding a 0.6 kb mRNA (named associated gene or AG) with sequences showing no significant similarity to those in the GenBank database. Northern blot analysis of polysomal RNA extracted from replicating and differentiating epimastigotes showed that metacyclogenin and AG genes displayed similar patterns of expression. Their products were detected only in differentiating epimastigotes, whereas tryparedoxin peroxidase was detected only in the polysomal RNA fraction of replicating and differentiating epimastigotes. In Northern blots of total RNA from differentiating and replicating epimastigotes, the genes studied were detected in both cell populations. The differential expression of the metacyclogenin gene was confirmed by immunocytochemistry studies showing that the protein is detected only in differentiating (adhered) epimastigote. The results suggest that mRNA mobilization to polysomes is an important mechanism in the regulation of gene expression in T. cruzi.


Brazilian Archives of Biology and Technology | 2007

Yeasts and filamentous fungi in bottled mineral water and tap water from municipal supplies

Mirian Ueda Yamaguchi; Rita de Cássia Pontello Rampazzo; Sueli Fumie Yamada-Ogatta; Celso Vataru Nakamura; Tânia Ueda-Nakamura; Benedito Prado Dias Filho

The main objective of this study was to analyse the occurrence of yeasts and filamentous fungi in drinking water as well as to investigate their correlation with the indicator bacteria of faecal pollution. Yeasts were detected in 36.6% and 11.6% of the bottled mineral on water dispensers and tap water samples from municipal system, respectively. Twenty-one (35.0%) of bottled mineral water and two (3.3%) of tap water samples were positive for filamentous fungi. For bottled mineral water 12 (20.0%) of 60 samples were positive for total coliform, compared with 3(5.0%)out of 60 samples from tap water. The mineral water from dispensers was more contaminated than tap water. Strains belonging to the genera Candida identified to the species level were C. parapsilosis, C. glabrata and C. albicans. Thus, bottled mineral water from water dispensers and tap water could be considered a possible transmission route for filamentous fungi and yeasts, and could constitute a potential health hazard, mainly to immunocompromised indivuals.


BMC Microbiology | 2013

Commensal Streptococcus agalactiae isolated from patients seen at University Hospital of Londrina, Paraná, Brazil: capsular types, genotyping, antimicrobial susceptibility and virulence determinants

Eliane Saori Otaguiri; Ana Elisa Belotto Morguette; Eliandro Reis Tavares; Pollyanna Myrella Capela dos Santos; Alexandre Tadachi Morey; Juscélio Donizete Cardoso; Marcia Regina Eches Perugini; Lucy Megumi Yamauchi; Sueli Fumie Yamada-Ogatta

BackgroundStreptococcus agalactiae or Group B Streptococci (GBS) have the ability to access various host sites, which reflects its adaptability to different environments during the course of infection. This adaptation is due to the expression of virulence factors that are involved with survival, invasion and bacterial persistence in the host. This study aimed to characterize GBS isolates from women of reproductive age seen at University Hospital of Londrina, according to capsular typing, genetic relatedness, antimicrobial susceptibility profile and occurrence of virulence determinants.ResultsA total of 83 GBS isolates were enrolled in this study. Capsular types Ia (42.2%), II (10.8%), III (14.5%) and V (30.1%) were identified in most GBS. One isolate each was classified as type IX and non-typeable.A total of 15 multiple locus variable number of tandem repeat analysis (MLVA) types were identified among the isolates, seven were singletons and eight were represented by more than four isolates. All isolates were susceptible to penicillin, ampicillin, cefepime, cefotaxime, chloramphenicol, levofloxacin and vancomycin. Resistance to erythromycin and clindamycin was observed in 19.3 and 13.3% of isolates, respectively. All isolates resistant to clindamycin were simultaneously resistant to erythromycin and were distributed in the capsular types III and V. One isolate showed the constitutive macrolide-lincosamide-streptogramin B (cMLSB) phenotype and ten showed the inducible MLSB (iMLSB) phenotype. The mechanism of resistance to erythromycin and clindamycin more prevalent among these isolates was mediated by the gene ermA, alone or in combination with the gene ermB. The isolates displaying resistance only to erythromycin belonged to capsular type Ia, and showed the M phenotype, which was mediated by the mefA/E gene. All isolates harbored the gene hylB and at least one pilus variant, PI-1, PI-2a or PI-2b. Although cylE was observed in all GBS, four isolates were classified as gamma-hemolytic and carotenoid pigment non-producers.ConclusionsOur results indicate the potential virulence of commensal GBS isolates, reinforcing the need for continued screening for this bacterium to prevent infections. The distribution of capsular and pili antigens, and MLVA profiles was also identified, which may contribute to the development of new strategies for the prevention and treatment of GBS infection.


Frontiers in Microbiology | 2016

Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

Sara Scandorieiro; Larissa C. de Camargo; César Armando Contreras Lancheros; Sueli Fumie Yamada-Ogatta; Celso Vataru Nakamura; Admilton Gonçalves de Oliveira; Célia Guadalupe Tardeli de Jesus Andrade; Nelson Durán; Gerson Nakazato

Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options.


Evidence-based Complementary and Alternative Medicine | 2014

Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

Suelen Balero de Paula; Thais Fernanda Bartelli; Vanessa Di Raimo; Jussevania Pereira Santos; Alexandre Tadachi Morey; Marina Andrea Bosini; Celso Vataru Nakamura; Lucy Megumi Yamauchi; Sueli Fumie Yamada-Ogatta

Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells of Candida spp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. Most Candida species showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of most Candida spp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol against Candida species other than C. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.


PLOS ONE | 2011

An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

Mariana Serpeloni; Carolina B. Moraes; J.R.C. Muniz; Maria Cristina M. Motta; Augusto Savio Peixoto Ramos; Rafael Luis Kessler; Alexandre Haruo Inoue; Wanderson D. DaRocha; Sueli Fumie Yamada-Ogatta; Stenio Perdigão Fragoso; Samuel Goldenberg; Lucio H. Freitas-Junior; Andréa Rodrigues Ávila

In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX) multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei —except the fibrillar center of nucleolus— and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II), but not RNA polymerase I (RNA pol I) or Spliced Leader (SL) transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and decrease of translation levels, reinforcing that Trypanosoma-Sub2 (Tryp-Sub2) is a component of mRNA transcription/export pathway in trypanosomes.


Current Pharmaceutical Biotechnology | 2016

Antifungal Activity of Condensed Tannins from Stryphnodendron adstringens: Effect on Candida tropicalis Growth and Adhesion Properties

Alexandre Tadachi Morey; Felipe C. de Souza; Jussevania Pereira Santos; Caibe A. Pereira; Juscélio Donizete Cardoso; Ricardo Sergio Almeida; Marco Antonio Costa; João Carlos Palazzo de Mello; Celso Vataru Nakamura; Phileno Pinge-Filho; Lucy Megumi Yamauchi; Sueli Fumie Yamada-Ogatta

Candida species are some of the most common causes of fungal infection worldwide. The limited efficacy of clinically available antifungals warrants the search for new compounds for treating candidiasis. This study evaluated the effect of condensed tannin-rich fraction (F2 fraction) of Stryphnodendron adstringens on in vitro and in vivo growth of Candida tropicalis, and on yeast adhesion properties. F2 exhibited a fungistatic effect with the minimum inhibitory concentration ranging from 0.5 to 8.0 μg/mL. A significant reduction in biofilm mass was observed after either pretreatment of planktonic cells for 2 h (mean reduction of 46.31±8.17%) or incubation during biofilm formation (mean reduction of 28.44±13.38%) with 4x MIC of F2. Prior exposure of planktonic cells to this F2 concentration also significantly decreased yeast adherence on HEp-2 cells (mean reduction of 43.13±14.29%), cell surface hydrophobicity (mean reduction of 25.89±10.49%) and mRNA levels of the genes ALST1-3 (2.9-, 1.8- and 1.8-fold decrease, respectively). Tenebrio molitor larvae, which are susceptible to C. tropicalis infection, were used for in vivo testing. Treatment with 128 and 256 μg/mL F2 significantly increased the survival of infected larvae. These results indicate a combined effect of F2 on inhibition of yeast growth and interference in yeast adhesion, which may contribute to the suppression of infection caused by C. tropicalis, thus reinforcing the potential of the condensed tannins from S. adstringens for the development of novel antifungal agents.


Medical Mycology | 2016

Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans.

Carline Longhi; Jussevania Pereira Santos; Alexandre Tadachi Morey; Priscyla D. Marcato; Nelson Durán; Phileno Pinge-Filho; Gerson Nakazato; Sueli Fumie Yamada-Ogatta; Lucy Megumi Yamauchi

Silver nanoparticles (AgNPs) have been extensively studied because of their anti-microbial potential. Here, we evaluated the effect of biologically synthesized silver nanoparticles (AgNPbio) alone and in combination with fluconazole (FLC) against planktonic cells and biofilms of FLC-resistant Candida albicans AgNPbio exhibited a fungicidal effect, with a minimal inhibitory concentration (MIC) and fungicidal concentration ranging from 2.17 to 4.35 μg/ml. The combination of AgNPbio and FLC reduced the MIC of FLC around 16 to 64 times against planktonic cells of allC. albicans There was no significant inhibitory effect of AgNPbio on biofilm cells. However, FLC combined with AgNPbio caused a significant dose-dependent decrease in the viability of both initial and mature biofilm. All concentrations of AgNPbio, alone or in combination with FLC, were not cytotoxic to mammalian cells.The results highlight the effectiveness of the combination of AgNPbio with FLC against FLC-resistant C. albicans.

Collaboration


Dive into the Sueli Fumie Yamada-Ogatta's collaboration.

Top Co-Authors

Avatar

Lucy Megumi Yamauchi

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Celso Vataru Nakamura

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

Phileno Pinge-Filho

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Tadachi Morey

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Gilselena Kerbauy

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aparecida Donizette Malvezi

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Tânia Ueda-Nakamura

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

Benedito Prado Dias Filho

Universidade Estadual de Maringá

View shared research outputs
Researchain Logo
Decentralizing Knowledge